
SOLVING LINEAR ALGEBRAIC EQUATIONS 
CAN BE INTERESTING 

GEORGE E. FORSYTHE1 

1. Introduction. The subject of this talk is mathematically a lowly 
one. Consider a system of n linear algebraic equations in n unknowns, 
written 

(1) Ax = b. 

Here A is a square matrix of order n, whose elements are given real 
numbers ai3' with a determinant d(A)9£0] x and b denote column 
vectors, and the components of b are given real numbers. (Complex 
numbers would offer no essential difficulty.) It is desired to calculate 
the components of the unique solution x = A~lb; here A~x is the in­
verse of A. 

Such problems arise in the most diverse branches of science and 
technology, either directly (e.g., the normal equations of the least-
squares adjustment of observations) or in an approximation to an­
other problem (e.g., the difference-equation approximation to a self-
adjoint boundary-value problem for a partial differential equation). 
These two are very frequent sources of numerical systems ; note that 
A>0 (i.e., A is symmetric and positive definite) in both examples. 
The order n is considered to range from perhaps 6 or 8 up to as large 
a number as can be handled. Stearn [ i l l ] , for instance, mentions 
the solution of a system of order 2300 by the U.S. Coast and Geodetic 
Survey. The accuracy demanded of an approximate solution £ varies 
widely; even the function which is to measure the accuracy of £ 
varies or is unknown. Some "customers" want to make the length 
\b— A%\ small; some, |^—^4 xô| ; others have apparently thought 
only in terms of getting A~xb exactly. 

We all know that each component of the solution A~lb can be ex­
pressed as a quotient of determinants by Cramer's rule. We have all 
evaluated determinants of orders 3, 4, and possibly 5, with a.-y inte­
gers; it is quite easy and rather boring. I therefore suspect that the 
average mathematician damns the practical solution of (1) as being 
both trivial and dull. 

An address delivered (under the title Solving linear equations is not trivial) before 
the Eugene meeting of the Society, June 21, 1952, by invitation of the Committee to 
Select Hour Speakers for Far Western Sectional Meetings; received by the editors 
December 6, 1952. 

1 Sponsored in part by the Office of Naval Research, USN. 
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One defense of the numerical analyst (preface of [81 ]) is to show 
that in many practical cases (say for decimal fractions a^ and n ^ 10) 
getting A~lb efficiently (or a t all) is actually not trivial, but demands 
both know-how and planning. This point is especially well taken 
against those whose program for solving (1) would be to evaluate 
n + 1 determinants from their definition, employing n\ multiplica­
tions per determinant. For n — 26, for example, (n + l)l is approxi­
mately 1028, a number of multiplications which would take the 
SWAC2 some 1017 years. Actually, only about (l/3)nz multiplications 
are needed to solve ( l ) ;see Bodewig [12]. For w = 26, (l/3)nz is ap­
proximately 6000, and the multiplications would take the SWAC 
about 3 seconds. 

I t is my hope, on the other hand, to arouse the mathematician's 
interest by showing (§2) the diversity of approaches to the solution of 
(1), and by mentioning (§§3 to 6) some problems associated with 
selected iterative methods. The newest process on the roster, the 
method of conjugate gradients, is outlined in §7. §8 touches on the 
difficult general subject of errors and "condition," while a few words 
are hazarded in §9 about the effect of machines on methods. 

Whether or not the subject proves interesting, the bibliography is 
intended to make the field look at least respectable! It is a representa­
tive condensation of the more than 500 titles in the author's file, 
most of which are in [27]. There are bibliographies on related sub­
jects in Collatz [16], Dwyer [20], Engineering Research Associ­
ates [22], Frame [36], Frankel [37], Franklin and Hankam [38a], 
Harvard Computation Laboratory [47], Higgins [55], Kuros, 
Markusevic, and RaSevskiï [7l] , Motzkin [82], Schwerdtfeger [106], 
andTaussky [116]. 

I t is remarkable how little is really understood about most of the 
methods for solving (1). They are being used nevertheless, and yield 
answers. This disparity between theory and practice appears to be 
typical of the gulf between the science and the art of numerical 
analysis. 

The following notations are occasionally used: (i) upk^ç[k (as 
k—>oo)w means that (for the vectors or numbers pk, qk) \pk — qk\ 
= 0(1^1) ; (ii) "pk~([k (as k—K»)" means that (for the numbers 
pk, q_k) pk^Oiqk) and gfc = 0 ( ^ ) . 

2. Survey of methods. I t usually surprises the uninitiated to learn 

2 National Bureau of Standards Western Automatic Computer, an electronic 
machine which can perform 2600 multiplications per second. See [61 ] for a description, 
now out of date. 
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the variety of methods actually used to solve systems (1). Surveys 
of methods are given by Bodewig [12], Dwyer [20], Faddeeva [23], 
Forsythe [26], Fox [33; 34], Frazer, Duncan and Collar [39], 
Hotelling [58], Householder [59; 60], Zurmühl [ l3 l ] , and others, 
but the spectrum of known methods is considerably broader than 
any of these surveys suggests. A classification of elimination methods 
is given by Jensen [65]. A tentative classification of all known 
methods, with a bibliography of about 450 titles, is in [27]. 

As mentioned in §1, one can solve a system (1) explicitly by use of 
determinants, while explicit solutions in other forms are sometimes 
available. Friedrich and Jenne [40], for example, describe the use 
of continued fractions. 

The best known methods are based on systematic elimination of 
unknowns from equations in the system (1) in the fashion of high-
school algebra, as described by Gauss [42]. The elimination amounts 
to triangularizing the matrix A by premultiplying it by a triangular 
matrix, as Banachiewicz [5] and Turing [122] point out. The process 
can be rendered very efficient numerically by consolidating opera­
tions; see, for example, Benoit [7], Dwyer [20], and Turing [122]. 
When A is positive definite, the method is equivalent to the succes­
sive orthogonalization of the unit vectors in the A metric by the 
Gram-Schmidt process [99]. With other metrics the orthogonaliza­
tion process yields different methods for solving (1). All these elimina­
tion methods can also be performed on any matrix of submatrix blocks 
formed by partitioning A> an idea suggested by Boltz [13] and based 
on relations given by Schur [lOS], The various elimination methods 
are direct, a term defined at the end of §2. 

There is a group of direct methods related to the characteristic 
polynomial cf> of some matrix. For example, if one can learn that 
<t>(A)^=cnA

n+ • • • +CiA + 7 = 0 , then, as Bingham [8] notes, one 
can compute A~lb = — cnA

n~lb — • • • — c^Ab — c\b. Similar remarks 
apply when <j>(H) is known for an operator H associated with the 
solution of (1) ; see §4. There are related methods involving the suc­
cessive orthogonalization of the vectors Ax^ A2x^ • • • , AnXo in the 
J, Ay A~1

1 or other metrics; one of these is given in §7. 
There is an unpublished direct method of H. Lewy using the theory 

of congruences in n dimensions, applicable mainly when the com­
ponents of A~lb are integers. It is based on the use of stencils for 
solving the system A*x = b*, where afj = 0 (if a^ is even) and afj—l 
(if an is odd), and where b? is similarly defined. 

Of a quite different nature is a group of iterative processes de­
vised by Jacobi [63], Nekrasov [88], Richardson [98], and others, 
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and subsumed by Cesari [15], Wittmeyer [127], and Geiringer [44] 
in a general class of linear iterative processes to be discussed in 
§3. In these methods one starts with an arbitrary first vector x0 ap­
proximating A~lb. For & = 0, 1, 2, • • • , the components of the &th 
approximant vector xk are systematically corrected, often in the 
cyclic order 1, 2, • • • , n, but sometimes in blocks or otherwise. 
After one cycle of the corrections has been completed, the components 
of the resulting vector Xk+i will have been obtained by solving a 
matrix equation Bxk+i + Cxjc~b for Xk+u where B + C = A. The dif­
ferent linear processes are distinguished by the choice of B, which 
must be an easily invertible matrix. For example, B can be the 
lower triangle of A [88], the diagonal of A [63], a scalar matrix [98], 
diagonal blocks of A (von Mises and Pollaczek-Geiringer [123], 
Hertwig [49]), etc. (When B is the lower triangle of Af the iterative 
method is commonly called the "Seidel process," or the "Gauss-
Seidel process." But, as Ostrowski [91 ] points out, Seidel [107] men­
tions the process but advocates not using it. Gauss nowhere mentions 
it. Nekrasov [88] studies its properties and says it is Seidell process. 
It will henceforth be called the "cyclic single-step process.") Under 
appropriate conditions mentioned in §3, xk approaches A^b, but ordi­
narily no Xk equals A^b. 

Another group of iterative processes includes those of Gauss [41 ], 
Seidel [107], Southwell [109; 110], Motzkin [2], and others. These 
are called "relaxation methods" in [109, HO]. They are discussed 
by Black and Southwell [lO], Fox [32], Temple [118], and others, 
and have proved especially useful in engineering work. They are 
difficult to define precisely, since the computer is essentially advised 
to use all the art and artifice he can muster to find x such that 
r = b— Ax is near 0. Their predominant feature, however, is that the 
components of x are corrected, not in a predetermined order, but in 
an order of "worst first." If this feature is adopted as defining relaxa­
tion, the iteration function (defined in §3) depends on x in a piece-
wise linear fashion, and the analytical character of the processes is 
completely different from that of the related linear processes. Relaxa­
tion has been studied recently in connection with solving systems of 
linear equalities; see Agmon [2], and Motzkin and Schoenberg [83]. 

Other nonlinear iterative processes include the least-squares itera­
tive methods discussed in §§5, 6, and 7. They start with Cauchy [14], 
and are synthesized by Temple [118], Rosser [unpublished], Hestenes 
and Stein [53], and others. Special cases include certain linear proc­
esses which essentially deal with a positive definite matrix. For ex­
ample, Kaczmarz [67] and Tompkins [120] interpret the system 
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(1) as restricting A~lb simultaneously to n hyperplanes. A first guess 
xo is projected successively on each hyperplane in cyclic order. Then 
the distance !#&—•/4~"1ô| decreases monotonically to 0. De la Garza 
[19] proposes a related process. When A>0, the cyclic single-step 
method and all the relaxation methods are also least-squares methods. 
This fact is the basis of many studies of the relaxation methods; see 
[H8]andOstrowski [93]. 

Least-squares processes which are not linear include the gradient 
methods of [14], developed in [118] and by Kantoroviö [68] and 
Birman [9]; see §5. Their culmination appears to be the conjugate 
gradient method of Hestenes [50; 54], Lanczos [72], and Stiefel 
[114; 54] ; this is a finite iteration described in §7. A gradient method 
in a more general metric is mentioned in §6. 

Seemingly very different are the Monte Carlo methods for solving 
(1), employing random sampling of a certain chance variable whose 
expectation is A~xb. One such method, devised by von Neumann and 
Ulam [unpublished], is described by Forsythe and Leibler [28]; 
Wasow [l25] devises another Monte Carlo method. Both are based 
on properties of discrete random walks in a space of n points. When 
the system (1) represents Laplace's or related difference equations in 
one or more dimensions, the Monte Carlo methods have a longer 
history; see the exposition and bibliography in Curtiss [18]. The 
methods are theoretically fascinating, but there is little evidence yet 
of their practical utility for solving linear systems. 

The iterative processes for solving (1) are likely to converge slowly, 
and a number of tricks have been devised to speed them up, called 
acceleration processes. Accelerations of linear processes may them­
selves be either linear or nonlinear; some are described in §4. A num­
ber of processes for accelerating the nonlinear gradient methods are 
mentioned at the end of §5, and the conjugate gradient method of §7 
may be considered also as an acceleration. 

The distinction between direct and iterative methods is ordinarily 
stressed in numerical analysis; see [23], for example. Applied to sys­
tems (1), a direct method is one which yields A~lb exactly in a finite 
number of arithmetical operations, if the latter are performed with­
out round-off error. An iterative process can ordinarily yield A~lb 
only as the limit of a sequence of exact arithmetical operations. How­
ever, it must be remembered that as soon as calculations are rounded 
off (as ordinarily occurs in machine calculation), direct methods dis­
appear except for quite simple problems, and all methods become 
iterative; see the end of §8. The practical distinction between meth­
ods for solving (1) then appears to depend on: (a) the speed of the 
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convergence to A~lb, and (b) the simplicity of the computation at 
each stage of the iteration. A two-way classification of methods might 
well be based on their behavior with respect to properties (a) and (b), 
and that of [27] was roughly of this type. Two difficulties make such 
a classification imprecise. First, the theory of round-off error is too 
poorly developed to yield rates of convergence to A~lb. Second, the 
practical criteria of simplicity in machine computation vary too 
greatly among different machines. 

One may also distinguish whether the matrix A is altered in the 
course of solution, as in elimination, or whether it is retained in its 
original form, as in the conjugate gradient process. This is probably a 
crucial distinction in practice, for, when the original A is retained, 
the round-off errors seem to accumulate more slowly; see §9. 

3. Linear iterative processes. An iterative process for solving (1) 
(or other equation) is determined by the functions Fk wherewith the 
(& + l ) th approximant to A~lb, Xk+u is derived from the earlier ap-
proximants x0, #i, • • • , #*. If the only argument of Fk is Xk, the itera­
tive process is said (Schroder [103]) to be of first degree: Xk+i = Fk(xk). 
If the function Fk is independent of k, the process is called stationary. 
A bibliography on iteration as such has been prepared by Schwerdt-
feger [106]. 

As elsewhere in mathematics, the most studied functions are the 
linear ones. We introduce the (most general) linear iterative process 
of the first degree by the definition 

(2) Xk+i = Fk(xk) = HkXk + vu, 

where the iJ& are square matrices and the Vk are vectors. If the itera­
tive process described by (2) is to solve (1), it seems essential that the 
solution A~xb be a, fixed point of Fk: 

(3) A~lb = FkiA-'b) = HkA^b + vk. 

We demand that (3) hold. I t follows that 

(4) * * « ( / - Hk)A-*b = Mkb. 

If the Hk and Mk are independent of 6, then (6) follows from (4). 
Thus: 

The most general stationary linear iterative process of the first degree 
for solving (1) which is independent of b and which satisfies (3) is de-
fined by the functions 

(5) xk+i = Fk(xk) = Hkxk + Mkb, 

where the square matrices Hk and Mk depend only on A and satisfy the 
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relations 

(6) Hk + MkA = / . 

If the process is stationary, then 

(7) ffjfc+i = Hxk + Mby 

where the square matrices H and M depend only on A and satisfy the 
relation 

(8) H + MA = / . 

Stationary processes of the type (7), (8) have been studied by 
Cesari [15], Wittmeyer [127], Geiringer [44], and others. They in­
clude the cyclic single-step iteration of Nekrasov [88] and Liebmann 
[74], and those of Jacobi [63], Richardson [98], Frankel [38], Young 
[129], and many others. In the cyclic single-step process, for example, 
one writes A as the sum of two matrices B = (bij) and C= (c»-y), where 

Oii l/t) = < t v and dj = < 

l0 (i < j) Uy (i < j) Ut7 (f < j). 

Then Bxk+i+Cxk = b, or #fc+i = —B~lCxk+B~lb; it is assumed that no 
a« = 0. Thus i 7 = - J S ^ C , while ikf=JS"1. 

Let us consider the convergence of the linear processes, under the 
assumption that all arithmetic operations are carried out with per­
fect accuracy. From (2) and (3) it follows that 

(9) xk+1 - A-*b = Hk(xk - A^b), 

whence 

(10) xk - A~lb = Kk(xo - A~lb), 

where Kk = Hk~iHk-2 • • • H1H0. In order that xk—A~~lb—»0 for ar­
bitrary Xo it is therefore necessary and sufficient that 

(11) lim Kkz = 0, for every vector z. 
k—>» 

In practice condition (11) is usually known to hold only in certain 
special cases, such as when: 

(a) all Hk are polynomials in some one matrix—for example, A ; 
(b) all Hkz=H (stationary process); 
(c) for some norm function, all || 12*11 ^ 1 —€ < 1. 
Henceforward we consider only case (b): stationary linear proc­

esses. Then Kk~Hk, and it is known (see [94], for example) that (11) 
holds if and only if each eigenvalue X»(U) of H is less than one in 
absolute value. Thus, we have derived the well known result that in 
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the stationary linear process Xk—*A~lb for all x0 if and only if all 
\UH)\<1. 

This result, while exceedingly important, hardly begins to solve 
the practical computer's problem. He raises the following questions: 
(i) How can one tell whether all |X*(JE0| <1? (ii) If all |X<(JE0| < 1 , 
how fast will the convergence be? (iii) If the convergence is intoler­
ably slow (as the computer realistically expects), how may it be 
speeded up? To a considerable extent these questions are answered by 
a knowledge of the asymptotic behavior of the error vector xk~-A~lb 
as £—>oo. Question (iii) will also be dealt with in §4. 

The general theory of the Jordan canonical form [78; 94] of the 
matrix H can be applied to discuss the asymptotic behavior of 
Xk—A~lb. Suppose, as is usually the case, that H has the diagonal 
canonical form 

(12) H= itlic/i, 
*-i 

where Ci, r\ are respectively the column and row eigenvectors of H 
belonging to Xt. Suppose that XQ-~ A~1b = ]T)J y id. From (10) one 
then finds that 

(13) xk — A b = H (XQ — A b) = jT, yikid* 
i=l 

If Xw is a unique eigenvalue of maximum modulus, and if Yn^O, then 

—1 k 

(14) xk — A b~ yn^nCn (as k —> oo ). 

This indicates that asymptotically Xk—>A~lb along a certain line, a 
fact which is often useful in accelerating the convergence of {Xk}. 

When Xn is unique but 7 n = 0, the relation (14) does not hold for 
exact operations. However, a calculation involving round-off errors 
will soon have the practical effect of making Yn^O. If several eigen­
values dominate in absolute value, formula (14) must usually be modi­
fied to include several terms. In any case, when (12) holds, formula 
(13) shows that xk approaches A~lb linearly—i.e., that 

(15) | Xk ~ A~~lb | ~ f max | X» | 1 (as k —•> oo). 

When (12) fails (i.e., when H does not have a diagonal Jordan 
canonical form), formulas (13) and (IS) have to be altered. The im­
portant fact, however, is that the basic mathematical theory is al­
ready in existence for dealing with linear iterative processes—at 
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least as long as round-off errors are not considered in detail. (It is 
commonly supposed that a nondiagonal canonical form would never 
arise in practical analysis. However, if one uses the Liebmann [74] 
process to solve the usual difference equation corresponding to the 
Dirichlet problem in one or more dimensions, the matrix H turns 
out to have a nondiagonal canonical form; see [129].) 

Recent developments in stationary linear processes have included 
a suggestion of Aitken [4] and others for making H>0 (i.e., a posi­
tive definite symmetric matrix), so that all Xi(iï) will be real and 
positive, insuring that (13) will in fact be dominated by one term. 
In the cyclic single-step process this can be achieved by solving for 
the components in the "to-and-fro" order 1, 2, • • • , n, n — l, • • • , 2 
and repeat. 

According to Ostrowski [91 ], for the cyclic single-step process it 
was first proved by Pizzetti [95] that, if A>0, all \\i(H)\ < 1 . A 
converse recently proved by Reich [97], and more simply by Ostrow­
ski [92], asserts that if A is symmetric and each au>0, then all 
\\i(H)\ < 1 if and only if A>0. Collatz [17], Stein and Rosenberg 
[ l l 3 ] , and others have studied the relations between the X»(.ff) for 
the cyclic single-step process and those for the related total-step 
process of Jacobi [63]. Other recent developments [38; 129] include 
the alteration of H by simple devices so that max* |X»-| is reduced as 
much as possible. In the Liebmann process for the Dirichlet problem, 
a certain systematic "over-relaxation" has just this effect. 

4. Acceleration of stationary linear processes. Since ordinarily the 
stationary linear process (7) seems to converge slowly, or even di­
verge, it is of the greatest practical importance to devise methods to 
improve the convergence. Any procedure which replaces Xk by a 
vector closer in some sense to A~lb is loosely called an acceleration of 
the iterative process (7). An acceleration may be considered as a 
summability process applied to the sequence {xk} defined by (13). The 
best understood accelerations are, like the iterations themselves, 
linear processes, in which the improved vector is a linear combination 
of 

The simplest linear acceleration is useful when H has a unique 
dominant eigenvalue Xn. By (14) 

%k+i — A~~lb c^. \n(xk — A~lb) (as k —> 00). 

Hence the vector 

(16) 
1 - X » 
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may be expected to give a better approximation to A~~lb than xk 

gives; (16) may be useful even when Xn is known only approximately. 
This idea has been applied by Flanders and Shortley [24], Lyusternik 
[77], and others. 

The same idea can be extended to take care of two or more dom­
inant A*. Let E be the operator increasing by one the subscript k of x: 
Xk+i — Exk- One can write (16) in the form 

(17) Pi(E)xk, 

where P1(E) = (l—\n)~
1(E—\n) is a polynomial of degree one in E. 

Let m be an integer. Consider the expression 

(18) Pm(E)xk, 

where Pm is some polynomial of degree m. How shall we determine 
Pm so that (18) is a good approximation to A^b? If we can answer 
this effectively, then (18) furnishes a useful linear acceleration of the 
process (7). 

In order that the operation (18) not worsen an already good ap­
proximation Xk, we must have 

(19) Pm(l) = 1. 

For if xk=*A~lb, then, by (3), Xk+i~Xk+2— • * • =-4~1ô, so that 
Pm(E)xk = Pm(l)^k = Pm(l)A-1b. 

If tn = n = the order of if, and if <f>ÇK) is the characteristic poly­
nomial of H, then the choice Pm{E) =$(E) /$(1) is perfect, in that 
Pm(E)xk is exactly equal to A~lb, for all xk. But ordinarily # is un­
known, and to obtain it would involve precise knowledge of all the 
eigenvalues X4- of H. 

Suppose that the eigenvalues Xt-, although not known precisely, 
are known all to be in a certain closed set R of the complex plane 
(for example, a real interval). By (8), since d(A)^01 the number 1 
cannot be an eigenvalue of H. Hence we may assume that R 
is bounded away from the point 1. Now the eigenvalues of Pm(H) are 
{Pm(X*)|. Since, by (13), 

n 

Pm(E)xk - A-*b = Pm(H)(xk - A~lb) = Z Pm{\)yiCU 

it is essential for the success of the acceleration that all |Pm(Xi)| 
be small. This leads to the approximation problem of determining the 
polynomial Pm of degree m such that (19) holds and such that 

(20) max | Pm(X) | is a minimum. 
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Such polynomials, named generically after Cebysev ( = Chebyshev 
= Tschebyscheff = • • • ), arise frequently in numerical analysis. 

If R is a real interval not containing 1, the minimizing polynomial 
Pm(X) is proportional to the ordinary Cebysev polynomial Tm(K) for 
the interval R: see W. Markoff [79]. For just this reason the poly­
nomials Tm have been used several times in matrix problems to sup­
press the effects of unwanted eigenvalues; see Abramov [ l ] , Flanders 
and Shortley [24], Gavurin [43], and Lanczos [73]. (A recent treat­
ment of Cebysev approximation problems in the complex plane is in 
[80].) 

The real difficulty in numerical analysis is that R is not known. 
How can the information gained from computing 

#o> Xiy * * * » 

Xk, • • • f Xk+m be used effectively to localize R, so that the Cebysev 
problem can be formulated? After R is localized, how can the corre­
sponding Pm(E) be determined approximately? These are important 
questions which are in need of treatment. The use of symmetric 
matrices H helps a great deal, by restricting R to the real axis. 

Another acceleration device is due to Schulz [104]. Suppose A=I 
—H, and that (21) converges. A linear process analogous to (7) ob­
tains A"1 as the sum of a Neumann series 
(21) (/ - fiT)-1 = I + H + H" + • • • , 

often slow to converge. By [104] one can obtain the partial sum 
Xn = I+H+ • • • +H*n~l of (21) by n iterations (22), 

(22) Xw = Xk(2I - AXk), Xo = / , 

a total of In matrix multiplications. The use of (22) to get A~x is 
sometimes called Newton's process. Can this idea be adapted to 
solving the system (1) without getting A~l first? 

For accelerating the convergence of any linear process one also 
has the 82-process of Aitken [3; 4] and its extensions by Shanks 
[108] and Samuelson [ lOl] . Lubkin [76] has studied it as a nonlinear 
sequence-to-sequence summability process. It requires no knowledge 
of the \{(H). Let y*. represent an arbitrary, but fixed, component of 
Xk. Then the functional character of yu in a linear process is given by 

n 

(23) yh = yw + X) s&b 

where yw is the desired component of A~lb, and the Xt-, Si are numbers. 
To determine y* from (23) it is theoretically sufficient to have ex­
actly 2n + l successive values of yu—for instance, y0, yi, • • • , 3>2n. In 
practice the elimination of the Si and X» would be too tedious, but 
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estimate of y^ = 

yic 

Ayk 

A2yk 

Ayic à2yk 

A2yk Azyk 

A*yk AAyk 

frequently one X», say Xn, predominates in (23). In the ô2-process 
one then ignores Si, X* for i = 1, • • • , n — 1, and from three successive 
yk obtains the following estimate for y*, useful for moderately large k: 

yicyk+2 — yk+i (àyk) 
estimate of y^ = = yk • 

yk — 2yk+i + yk+2 à2yk 

In [108] Shanks assumes that m eigenvalues dominate (23), 
ignores sif X»- for i = l , • • • , w —w, and by an elimination obtains an 
estimate for y«> in terms of 2m + 1 successive yk. For m = 2, for 
example, one can show that the 

A2yk Azyk 

Azyk A*yk 

5. Least-squares methods. A variational approach to solving (1) 
seems very fruitful. In a general treatment over the complex field 
(the present treatment is confined to the real field), Hestenes and 
Stein [53] take a matrix R>0 and let (zTRz)U2 = | z\ R be the R-kngth 
of a vector z. (The T stands for transposition.) If B~ATRA and 
c = ATRb1 then J B > 0 also. Let the deviation of x from A~lb be meas­
ured by 

(24) f(x) = \Ax-b\l=z\x- A~lb \l = x Bx - 2x c + | b |L 

Starting from an initial vector x0, one can move x in various direc­
tions with the object of minimizing ƒ(x). Clearly the minimum is at­
tained just when x=A~~lb. 

To simplify the exposition we now assume A > 0 and take R~A~l. 
Then 

(25) ƒ (a) = xTAx - 2xTb + bTA~lb. 

Although/(x) is not computable unless A~lb is known, it is sufficient 
in practice to minimize the computable function ƒ(x) —bTA~1b. Fix xf 

and let r = b — Ax be the residual of the system (1) at x. Let d^O 
determine a direction. Since f(x+ad) =a2dTAd — 2adTr+f(x), the 
value of the real parameter a for which f(x+ad) is a minimum is 

(26) a* = dTr/dTAd; 

this a* is called the optimum a (corresponding to x and d). 
For any a=/?a* one can compute f(x+ad) from the re­

lation ƒ (a) - / ( t f + o i ) = (2aa* -a2)<F.4rf, i.e., / (a) -f(x+pa*d) 
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= p(2-(3)a*WTAd. Thus (when dTr^0)9 f(x+$a*d) <f(x) for (X/3 
< 2 . The greatest reduction in f(x) comes when ]8 = 1. 

We now describe a general least-squares iterative process for solving 
(1). There must be prescribed: (i) a start x0; (ii) a sequence of direc­
tions {dk} ; (iii) a sequence of ratios {f t}. (In [S3], but not here, R 
must also be prescribed.) For each k = 0, 1, 2, • • • , one determines 
a = ak* by (26) so that f(xk+adk) is minimized. Then one lets 

(27) Xk+i ~ xk + Pkotkdk, 

where rk — b—Axk and ak* = dlrk/dlAdk. (It is not specified that the 
fik and the dk be determined a priori; they may depend on xk.) If the 
sequences {ft} and {dk} satisfy (28) and (29), it is shown in [53] 
that, independently of x0y f{Xk)-*f(A-lb), as k—><*>, so that xk—>A~lb. 
The conditions are: 

(28) 0 < ôi g ft ^ 2 - ôi < 2 (all *); 

(29) 0 < Ô2 = | ^ | / ( | ^ | • Ir*!) (all*). 

In [53] an alternate to (29) states that the dk recurrently span the 
space in a certain uniform manner. 

Among others, the following two least-squares processes are also 
linear iterative processes: (a) the dk and ft are independent of the 
Xk\ (b) dk = rk but «& = ftc^* === a is a constant. When in (a) all ft = l 
and the dk are the coordinate unit vectors in cyclic order, one has the 
cyclic single-step process of Nekrasov [88], The use of f(x) is very 
useful in studying any single-step process. In (b) one can write the 
linear iteration function of §3 in the form F(x) = x+a(b — Ax) 
= (I — aA)x+b; the process is due to Richardson [98] and to von 
Mises and Pollaczek-Geiringer [123], and converges whenever 0 < a 
<2/max* \i(A). 

In the general case, however, the least-squares process is nonlinear. 
When dk = rk= — 2~l grad ƒ(xk), it is called a gradient method (or 
method of steepest descent). When ft==l, one has the optimum gradi­
ent method (since f(xk+adk) is minimized as a function of a), pro­
posed by Cauchy [14] and studied by Temple [ l l8 ] , Kantorovic 
[68], Birman [9], and by Hestenes and Karush [52] for the eigen­
value problem. Some variations of the method are treated by 
Krasnosel'skiï and Kreïn [70a]. 

By (25) the surfaces/(x) = constant are similar and similarly situ­
ated ellipsoids whose common center A~lb we seek. Any approximant 
Xk lies on a certain ellipsoid Sk of the family. The gradient, — 2rk, 
lies in the normal iri(xk) to Sk a t xk. Now Xk+i is the unique point of 
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7Ti(xk) for which/(x) is minimized. Since f (x) is a quadratic function 
of distance along the normal, Xk+i is located halfway between the 
two intersections of TTi(xk) with Sk. Moreover, Xk+i is the point 
where iri(xk) is tangent to an ellipsoid of the family. 

Let 0<Xi^3X2^5 • • • ^Xn be the eigenvalues of A. Kantorovië [68] 
shows that 

[7(**+i)"l1/f xn - Xi 

L fixa J xn + Xi 
From this it follows that f(xk) [ 0, so that xk—^A~1b and the process 
converges. As we mentioned in §3, the practical computers problem 
merely begins with such knowledge. Some experience convinces him 
that (a) jui is frequently very close to 1, and (b) after a few steps 
|/(ff*+i)//(#*)]1/2 becomes and remains very close to /JLI; see [25]. 
Observation (a) is borne out by the remark [6, p. 59] that, for cer­
tain matrices A of type CTC, it is likely that, as n—» <*>, Xn/Xi^w2, 
whence 1— /jLi~n~~2. For finite-difference approximations to the La­
place operator over rectangular regions Frankel [38] shows that 
l—Hi^n"1, where n is the number of lattice points. As to (b), for 
any A the value jui can always be attained by [f(xk+i)/f(xk)]

1/2 when 
Xk—A~1b assumes certain directions in the plane spanned by u± and 
un (defined below). From (a) and (b) we conclude that the optimum 
gradient method is frequently too slow for practical use. 

As a guide to the possible acceleration of the method it would be 
valuable to know the asymptotic behavior of xk—A~lb, if arithmetical 
operations are done exactly. But, because xk+i is obtained from xk 

by a rational cubic transformation, theorems are hard to prove! 
It is a conjecture of Forsythe and Motzkin [30], proved only for 
n = 3 in [29], that in the optimum gradient method the error vector 
xk—A~lb is asymptotically a linear combination of the eigenvectors 
wn, Ux of A belonging to the largest (Xn) and least (Xi) eigenvalue of A. 
(If there are eigenvectors of A orthogonal to x0 — A~lb, one disre­
gards the corresponding eigenvalues in determining Xi and Xw.) A 
proof of the conjecture for w è 4 would be very desirable because, 
when the conjectured asymptotic relationship holds, for all sufficiently 
large k the points Xk, xk+ll Xk+2, and A~lb are asymptotically coplanar. 
Thus one could accelerate the convergence of the optimum gradient 
method by occasionally minimizing ƒ (x) in the plane through the end 
points of Xk, Xk+i, and xk+2. The method has been used successfully in 
experiments [25] for n = 6 on an IBM Card-Programmed Calculator, 
where the average value of f(xk+i)/f(xk) over a series of about 100 steps 
was reduced from .9733 (optimum gradient method) to .6245 (opti-
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mum gradient method with acceleration every ninth step). 
A second idea to speed up the optimum gradient method, the 

^-optimum method proposed by Hartree [46] and by Hestenes and 
Stein [53], is to give ft some constant value j3 in the range 0 < / 3 < l . 
In the test problem of [25], Stein [112] finds /3 = 0.9 to be approxi­
mately best, and with it the average value of f(xk+i)/f(xk) is found 
[25] to be .8204; in [112], .8065 is found for a shorter run. Although 
the convergence of the jS-optimum method is slower (in this test) 
than that of the accelerated optimum gradient method, the former 
has the considerable advantage of being shorter to code for auto­
matic machinery. The success of the ^-optimum method is perhaps 
due to an inherent instability of the transformations. In 2 dimensions 
the transformation of xk—- A~~lb to Xk+i—A~~lb has no stable fixed 
direction when /3 is slightly less than 1 [Motzkin and the author, 
unpublished]. 

6. General descent methods. The function ƒ of (24) has the fol­
lowing significant properties: f(A~lb) = 0 ; f(x) > 0 if xj^A"lb\ ƒ is a 
convex function of x. Any ƒ with these properties might serve as the 
basis for what Professor Motzkin calls a descent method. In such a 
method one has a first guess x0l and sequences {dh} and {&} as in 
§5. As before, one finds a = a* minimizing ƒ(xk+adk), and selects 
xk+i = Xk+($kak*dk. 

Other suitable ƒ would be 

(3D / (*) -Z |r< | , 
»=»1 

(32) ƒ(*) = max | u | . 
i 

Methods employing the latter norm functions/, with dk = — grad f(xk), 
are somewhat related to—but apparently do not include—the piece-
wise linear iterative processes. Agmon [2] discusses a relaxation 
method for linear inequalities from somewhat this point of view. 
Zuhovîckiï [ l30] gives a gradient method in the metric (32) for 
minimizing ƒ(x) for incompatible systems Ax — b. 

7. Method of conjugate gradients. It is easy to show that the ac­
celeration step of [25], discussed in §5, is equivalent to finding the 
unique point x' for which ƒ(#') =f(xk+aork+aiArk) is minimized as a 
function of the two parameters ao and a\. This suggests a generaliza­
tion to p parameters discussed by Kantorovic [68] and Birman [9]. 
Let Xo be any point, and let ro = &—Ax0. Define/(x) by (25). Let 
TP(XO) be the ^-space of points Xo+aorQ+aiAr0+ • • • +a3,-i-4p~Vo, 
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where ao, • • • , ap-i are real parameters. Let xp be the unique 
point in ^(xo) for which ƒ(x) is minimized: 

(33) f(x0 + a0r0 + • • • + a^iA^hr^ = min. 

To determine xp one has to solve a linear system of p equations in 
the p unknowns aQl • • • , ap-\. 

Define Xi, • • • , Xw as in §5. Let the interval Xi^X^X n be trans­
formed into the interval — l ^ / ^ l by the affine transformation 
/ = r(X), carrying Xn into — 1, and Xi into 1. Then r (0 )=S 
= (Xn+Xi)(Xn—Xi)""1. Let Tn(t) be the ordinary Cebysev polynomial 
of degree n, normalized so that 7^(1) =max_i^^i | Tn(t) | = 1. In these 
notations Birman [9] has proved that, for each A, 

[ fix ) 1 1 / 2 1 

Thus (34) is the extension to p>l of (30). 
Let /» = T(X»-), so that /i = l, tn= — 1. For a given ^4, the value \xp 

cannot necessarily be attained by [f(xp)/f(x0)]
112. I t will be attained, 

however, for any A with eigenvalues for which the corresponding t{ 
include all the p + 1 values / with | Tp(t) | = 1. For such A, the x0 for 
which [f(xp)/f(x0)]

1/2 = JJLP are in the subspace spanned by just those 
eigenvectors Ui belonging to the X» for which | 2n

i>[r(Xi)]| = 1 . The 
case p = 1 is exceptional, in that the maximum fxi is always attained 
in (34) = (30), just because the two values / = ± 1 where | Ti(t)\ = 1 
are necessarily r-images of eigenvalues. 

For any fixed integer p è 1 the above p-step process can be iterated 
to yield a convergent procedure for finding A~lb. Namely, for k 
= 0, 1, • • • , one obtains x%+i as the unique point x in nrp{x^)) for 
which f(x) is minimized. The optimum gradient method of §5 is the 
case p = l. If p<&n we may expect that there are eigenvalues X» of A 
close to the p + 1 points where | rp[f(Xi)] | = 1 , and hence that the 
value fxp of (34) is almost attained for certain XQ. I t is then to be 
expected that, for most x0f [fixt+J/fix^)]112 will be approximately 
fxp for all large k. Moreover, if Xi<^Xw, then 8 is near 1 and \xp is ap­
proximately 1 —2^>2(Xi/Xn). Thus the minimization in p dimensions 
may be expected asymptotically to proceed p2 times as fast as the 
optimum gradient method (£ = 1), when p<£n. If Xn/Xi = w2 (see §5), 
the iterated ^-dimensional minimization in w-space may be expected 
to converge like the optimum gradient method in n/p dimensions. 

The true asymptotic behavior of x^—A~lb is unknown. Does the 
vector dp—A^b asymptotically lie in a certain (p + 1)-dimensional 
subspace, as is conjectured for p~l? 
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Because the above iterative process requires a t each step solving 
a linear system of pth. order, up to very recently the method was con­
sidered practical only for p<£n. For p = n> in particular, it appeared 
that determining the minimizing cet- in (33) would involve solving a 
linear system quite as difficult as Ax = b. Then, about 1951, Stiefel 
[114], Lanczos [72], and Hestenes [50], working independently at 
first, all discovered that (33) can be minimized by p repetitions of a 
beautifully simple algorithm. By taking p = n one actually finds A~lb 
in n steps, except for round-off errors. The resulting conjugate gradient 
method is thus a typical finite iteration. An extended exposition is in 
[54], while brief expositions are given by Rosser [lOO], Householder 
[59], and Taussky and Todd [117]. 

The conjugate gradient method is a nonlinear stationary iterative 
process. The first approximant, x0, is arbitrary; one takes po = ro 
~b—Axo. For any &^0, assume the vectors xk} rk, pk have been de­
termined. Then Xk+if rk+i, pk+i are determined in order as follows: 

T T 
oik = rkpk/pkApk] 

ffjfc+l = OCk + Oikpk\ 

(35) fjb+i = rk — cLkApk) 
T T 

Pk = — rk+iApk/pkApk] 
pk+l = fk+1 + fikpk-

Here rk — b—Axk, and the significance of pk, a*, ft will appear below; 
ft has a different meaning than in §5. In the absence of round-off 
errors, xn = A~lb] if round-off errors make Xn^A^b, one has merely 
to carry the algorithm on for fe = w + l, w+2, • • • , until sufficient 
accuracy is attained. 

The kernel of a number of methods of solving Ax = b for A > 0 is 
the determination of a set of n directions {pk} (k = 0, • • • , n — 1) 
which are conjugate (A-orthogonal) in the sense that p?Apj~0 for 
i^j. If the {pi} are known, then 

(36) A~lb = ]JE (plb/pTkApk)pk. 

A convenient method to get the pk is to apply the Gram-Schmidt 
process [99] of successively -4-orthogonalizing some set of n linearly 
independent vectors {vk}. In Gaussian elimination (pivotal condensa­
tion) the Vk are taken to be the n coordinate unit vectors, as Fox, 
Huskey, and Wilkinson [35] discovered, and the coefficients defining 
the orthogonalization build up a triangular matrix. 
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In the method of conjugate gradients the vk are the vectors 
rk = b — Axk (& = 0, • • • , r —1). The beauty of this choice is that 
rk+i turns out to be automatically conjugate to p0, pu • • • , pk-\. In 
picking pk+i it is therefore necessary only to alter rk+i in the direction 
pk; the calculation of fik and pk+i in (35) has this object. The calcula­
tion of ak and xk is an iterative procedure for building up the sum (36). 

Recalling that xp actually minimizes (33), we see that in practice 
the residual rp may become so small for some p <n that it is unneces­
sary even to complete the n steps theoretically required to compute 
A~lb. This occurred for p = 90 in a successful calculation with n = 105 
of a difficult stress problem reported by Hochstrasser [S6] and Stiefel 
[114]. Such a saving could hardly occur with Gaussian elimination, 
since the unit vectors have no such intimate connection with the sys­
tem (1) as do the vectors rk. 

The conjugate gradient method has a geometrical interpretation. 
As in §5, one seeks the common center A~lb of the ellipsoids f(x) 
= constant. Let Xo be prescribed. One gets X\ by performing one 
optimum gradient step (§5) in the unrestricted w-dimensional space 
Rn. Recall the definition of 7Ti(x0). There is an (n — 1)-dimensional 
affine subspace i?w-i passing through Xi and conjugate to 7Ti(x0). The 
solution A~xb lies in 2?»-i. One gets x2 by taking an optimum gradient 
step within Rn~v The gradient — 2pi of f(x) a t X\ within Rn~i is the 
projection into Rn-i of the gradient — 2ri of f(x) a t Xi within i?n. 
The optimal point in the direction pi from Xi is X2 — Xi+aipi. Simi­
larly, one gets xk+i by taking one optimum gradient step from xk 

within the (n — k)-dimensional affine subspace Rn~k through xk conju­
gate to Trk(xo). Finally, R0 is the solution point A~lb. 

This is a bare description of the method. In [54] Hestenes and 
Stiefel give an amazing number of its properties, discuss its applica­
tion to unsymmetrical systems (1), and so on. A few machine experi­
ments [SI; 56; 57; 114] with the method suggest good stability with 
respect to round-off errors, but a theoretical study of the stability 
would be desirable. 

The conjugate gradient method can theoretically be applied to 
solving a system Ax = b, where A is a bounded positive-definite self-
adjoint operator on a Hubert space. One defines f(x) = (x, Ax) 
— 2(x, b) + (b, A~lb)\ the inverse operator A~l certainly exists. The 
method will ordinarily no longer converge in n steps, but the asymp­
totic behavior of f(xp) can be discussed. Karush [70] shows that if 
A =o)I+K, where K is completely continuous and co^O, then f(xp) 
goes to 0 faster than the £th term of any geometrical progression. 
Hayes [48] treats a general A with lower, upper bounds m, M 
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(0< m < ikf < oo)f and proves that f(xp) ^ [1 - (m/M) ]pf(x0). More 
can be proved : 

Let 8 = (M-\-m)(M—m)"1. The Birman inequality (34) shows that 
[ f f e ) / / ( ^ o ) ] 1 / 2 ^ l / r p ( Ô ) < l . Hence, since 2TP(S) = [5 + (S2 —l)1/2]^ 
+ [ 8 ~ ( 5 2 - l ) 1 / 2 ] p , one gets the estimate 

(37) U ^ - g > , a s ^ - > o o . 
L/(*o)J ô + (ô2-iyi* ô + (ô*~iyi* r 

In another paper the asymptotic nature of \f(xp)]
ll2p will be de­

scribed more precisely for a class of operators A with a continuous 
spectrum. 

8. Errors and "condition." One must say something about the im­
portant but little-understood subject of errors. We may distinguish 
between: I. errors committed in the course of solving the system by a 
specific algorithm; II. errors inherent in the system Ax = b. 

Within I one is concerned with the truncation errors and the 
round-off errors of an algorithm, a distinction explained in [124]. 
The truncation error exists for infinite iterations, and may be identi­
fied with Xk—A~1b; its behavior has been examined in the above 
survey, under the assumption that there was no round-off error. 
The study of round-off error itself is far more difficult, and there seems 
to have been a complete discussion in connection with only one 
method, elimination; see von Neumann and Goldstine [124; 45], and 
also Mulholland [85]. For other studies see Bargmann, Montgomery, 
and von Neumann [ô], Dwyer [20 ], Satterthwaite [102], Tucker-
man [121], and Turing [122]. 

Any approximate solution £ of Ax — b can be checked a posteriori 
by forming the residual p = & —A%. The magnitude of A~lb—£ can 
then be estimated by using some tool for examining errors under II . 
Hence to bound the errors in a calculated £ it is unnecessary to have 
a priori knowledge of the accumulation of round-off error. Such 
knowledge may be important, however, for planning purposes—for 
example, in deciding in advance how many digital places to carry in 
order that p be reasonably small. 

The errors under II have attracted more study. The practical 
analyst, realizing that the elements of A and b are subject to uncer­
tainty, wishes to know the corresponding uncertainty in A~~lb\ the 
latter is the inherent error of Milne [81 ]. The usual approach is the 
approximate one of bounding the principal part of the error, 8(A~lb) 
^A^1(ÔA)A-1b+A-1ôb; see Blumenthal [ l l ] , Milne [8l], Moul-
ton [84], Ostrowski [90], Wittmeyer [126], and Zurmühl [131]. 
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But others (e.g., Janet [64], Ostrowski [89], Lonseth [77]) bound 
the entire error, finding a region S to which A~lb is rigorously con­
fined, given p = b—At; and other reasonably computable quantities 
associated with the system. See also Woodbury [128]. 

Various persons (e.g., Jürgens [66], Todd [119], and Turing [122]) 
have attempted to ascribe a condition to the system Ax = b. In part, 
the condition should measure the influence on A~lb of small changes 
in A and b\ the larger the change in A~lb for given changes in A and 
by the "worse" the condition. Although the condition depends on 
both A and &, the measures hitherto proposed depend only on A. The 
belief is widespread that the condition of a system (1) has a decisive 
influence on the convergence of an iterative solution and on the ac­
curacy of a direct solution ; this cannot always be true. Even when it is 
true for an iterative process, it may be possible actually to take ad­
vantage of the poor condition of (1) in converting the slow process 
into an accelerated method which converges rapidly. There is great 
need for clarification of the group of ideas associated with "condi­
tion." 

With the concept of "ill-conditioned" systems Ax = b goes the idea 
of "preconditioning" them. Gauss [41 ] and Jacobi [63] made early 
contributions to this subject. That of Gauss is analyzed and extended 
in [31]. 

A convenient means of preconditioning is to premultiply the 
system with a matrix B, so that one has to solve 

(38) BA%= Bb. 

The perfect choice of B would be A"1. A frequent choice is AT, so 
that (38) gets a symmetric matrix ATA, very convenient for many 
processes, though "worse conditioned" in some senses (Taussky 
[ l lS]) . Is there in any sense a "best" choice of B which is quickly 
obtainable? 

The Gauss elimination process may be written in the form (38), 
where in the absence of round-off errors BA is a triangular matrix. In 
some calculations the true solution A~xb comes from iteration of the 
back solution—i.e., of getting xk+i by an approximate solution of the 
triangular system BA(x — xk) = B(b — Axk). Where this occurs, we may 
interpret the forward solution or triangularization as merely a pre­
conditioning of the system (1) into the form (38). 

9. Influence of computing equipment. The usefulness of a process 
for solving (1) depends intimately on the properties of the machine 
on which the calculation takes place, as well as on the special char­
acter of A and b. The past decade has seen revolutionary develop-
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ments in computing equipment: analogue machinery, desk computers, 
IBM equipment, and automatically sequenced high-speed digital 
computers. As a result, computing methods are in no way settled 
down, and bibliographies are out of date before publication. 

Analogue machinery can be very useful, but is not discussed here; 
for references see Engineering Research Associates [22], Frame [36], 
and Murray [86]. 

While direct methods for solving Ax = b have been little mentioned 
here, they have been very successful since the time of Gauss or earlier. 
Dwyer [20 ], Bodewig [12] and others conclude that a compact 
arrangement of Gaussian elimination is commonly the best method 
for the computing team of a desk machine, a data sheet, and a trained 
human being—principally because the number of operations is mini­
mized. Elimination is very successful with IBM machines also, but its 
superiority over other methods is less pronounced, because it is seldom 
expedient with IBM equipment to use the compact arrangements 
which save so many operations. A bibliography on computing meth­
ods for IBM machinery is given in [38a]. 

Let us now consider automatically programmed digital computers 
like the SWAC. These are much faster than previous computers, but 
the speed of arithmetic operations and of access to a small store of 
data (high-speed memory) has been accelerated a great deal more 
than the operations of input, output, and access to a large store of 
data. The resulting change in the relative costs of different operations 
has a profound effect on the choice of computing methods. One soon 
learns that a variety of processes have been tried and advocated for 
solving (1); certainly the optimal method depends on the problem, 
the machine, the operator, and the coder. Moreover, small changes in 
these factors may radically alter the optimal choice of method. 

The following tentative ideas are based on a limited experience 
with the SWAC, and practically no experience with other machines. 
The analysis is dominated by the relative shortage of memory cells in 
the SWAC ; it is therefore less pertinent for machines with more stor­
age space, and for the SWAC after the expected addition of a mag­
netic drum. Assume n to be fairly large, say ^ 15. For simplicity we 
again confine our attention to matrices A>0. As indicated after 
(38), the forward solution in elimination amounts to building up a 
new matrix BA} which must be stored somewhere. If BA is kept in 
the high-speed memory, it occupies critically needed space. If it is 
output and input as needed (say by rows, as Huskey [61 ] describes), 
the programming is complicated and the solution is considerably 
slowed. If A is a matrix which can be generated internally as needed 
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(for instance, the matrix of the Laplace difference operator), it re­
quires little space, and BA becomes the principal item to be stored. 
Where A cannot be generated internally, the storage problem gets 
still worse, because the round-off errors can only be reduced by 
using A to compute the residual r = 6— Ax from time to time, so that 
both BA and A must be stored. 

These considerations suggest that a solution process should pref­
erably work with only one matrix, A itself, and should require rela­
tively little other storage. Since the instructions have to be stored, 
this suggests a process of simple structure, repeated as often as 
necessary. A process seeming to require a minimum of storage is the 
cyclic single-step procedure mentioned in §3; besides A (if it must 
be stored), one need store only one vector, x, a t a time. This method 
was picked by Reich [96] as best for a digital computer, and is un­
doubtedly ideal when it converges fast enough. But we may expect 
that the convergence is frequently too slow. If an acceleration of the 
types discussed in §4 is needed, the complication in programming 
may make another procedure preferable. Another method of speeding 
up the cyclic single-step method is by appropriately overcorrecting 
at each step, as discussed by Frankel [38] and Young [129] for spe­
cial systems (1). I t seems likely that a careful determination of the 
optimal overcorrection will sometimes provide adequate convergence, 
but that it will often fail. 

The ordinary relaxation (i.e., piecewise linear) processes require 
about the same storage as the cyclic single-step methods ; it is not clear 
whether they are essentially faster or not. A suggestion of Motzkin 
and Schoenberg [83] for extreme overrelaxation is promising but 
untried. 

If the above methods fail, one can switch to the optimum gradient 
method of §5. This also works with A> which must be stored or gen­
erated, and further requires the storage of the two vectors Xk and ru. 
(The storage of Xk can be avoided if Xk+i — Xk is output at each step, 
and cumulated later.) Again the method is probably commonly too 
slow. It can be speeded up either by the /3-optimum device of §5, 
for j8< l , or by Richardson's idea [98] of widely varying ak—fiak* 
over the range of eigenvalues Xj"1 of A~l. 

If these tricks fail or require too complex a program, the gradient 
methods of §7 are available. Besides A, they require the storage of 
three vectors xky rkl pk. (As above, the outputting of x&+i — Xk saves 
storing xk). Of these methods, there seems to be no reason for not 
adopting the conjugate gradient method, since for the same storage 
its convergence is much the best. Programming is simple, as only one 
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routine is needed; all necessary variations in the at- are provided 
automatically. A drawback is that, since the ctk and other numbers 
vary so much in the calculation, it is difficult to provide scaling 
factors in advance. Consequently one uses "floating binary point" 
operations, requiring considerable memory space to hold the instruc­
tions and multiplying the solution time by a factor which varies on 
the SWAC from the order of SO (when A is generated internally) to 
about one (when A is input a t each iterative step). But the method 
has proved able to cope with some "badly conditioned" matrices, as 
reported by Hestenes, Hochstrasser, and Wilson [51 ], and Hoch-
strasser [57]. I t probably approaches the ideal of a machine method 
which can be relied on to work automatically without special analysis 
of the particular system (1). 

With any method the partitioning of A may greatly increase the 
speed by enabling subsidiary matrix inversions to take place entirely 
within the high-speed memory; see [21 ]. One usually thinks of Gaus­
sian elimination on the submatrix blocks. Would other methods on 
the blocks be preferable? 
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