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A convex metric space is a metric space in which for each two points 
a and b there is a point c, different from a and 6, such that d(a, b) 
= d(a, c)+d(c, &), where d is the distance function. Menger has raised 
the question whether for every Peano space (that is, compact, metric, 
locally connected continuum) it is possible to define a distance func­
tion (preserving the original topology) with respect to which the 
space is convex.1 In the present paper, this question is answered in the 
affirmative. For a general discussion of the problem and various 
partial solutions of it, see Menger2 and Blumenthal.3 After Blumen-
thal's book was written, Beer4 and Bing5 established convexification 
theorems for the one-dimensional and finite-dimensional cases re­
spectively. 

Only a short time after the present paper was written, Bing inde­
pendently obtained a proof of the convexification theorem. His 
paper will be published in this Bulletin. 

As Menger has shown6 every compact convex metric space is locally 
connected. An affirmative answer to Menger's question therefore 
shows that for compact metric spaces, local connectedness and the 
existence of a convex metric are equivalent. 

Theorems 1 and 2, our principal preliminary results, may be of 
interest independently of the use made of them here; they do not 
appear to be readily deducible from the convexification theorem, 
and their conclusions are considerably stronger than our present 
purposes require. 

THEOREM 1. Let S be a Peano space and let R, R', and D be open 
sets such that (1) RCR'CD, (2) the closures of p(R)-p(D) and 
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P(R')~-f3(D) do not intersect, and (3) D is locally connected at each 
point of 13(D).7 Then there is an open set R" such that (1) RC.R"CR'> 
and (2) R" and D — "R" are locally connected at each point of (3(R").B 

PROOF. The proof of this theorem will involve some rather compli­
cated definitions; and it may be well to explain their motivation by 
giving a very rough sketch of the proof. We wish to obtain a sequence 
Z7i, Ui, • • • of open sets lying between R and R' (in the sense that 
RQUiCR') such that the sequence J7i, Uzy • • • is monotone ascend­
ing and Uz, UA, • • • is monotone descending, and a sequence 
G\, G2, • • * of finite collections of open sets, each a refinement of the 
one before, with meshes9 approaching 0, covering the annuli between 
successive terms of the Z7-sequence. I t will turn out that R" is the 
sum of the sets Uu+\ and that the closure of P(R") —(3(D) is the 
common part of the sets G*.10 We shall want to use the elements of 
the collections Gt- to establish local connectivity for R" on (J(R"). 
We therefore want the sets g • £/2»+i (where g belongs to a term of 
the G-sequence) to be in some sense "as nearly connected as possible." 
We are forced to give rather complicated criteria of such "optimum 
connectness." Furthermore, a t each stage we wish to define an ele­
ment of the [/-sequence so as to give ourselves a manageable situa­
tion for the next stage. Definition F gives a precise formulation of 
this condition. Finally, in Lemmas 4 and 5, we show that by doing 
our best at each stage, we do well enough. 

DEFINITION A. By U:V we mean that U and V satisfy the hy­
pothesis of the theorem for R and R'. 

DEFINITION B. If U is an open set lying in £>, then by B(U) we 
mean the closure of /3(U) —j8(Z>). 

DEFINITION C. If B is a closed set in 5 , then an admissible covering 
7 If A is a set, then p(A) is the boundary of A. If A and B are sets, then A—B de­

notes A—A 'B whether J? is a subset of A or not. A set M is locally connected at a 
point p (which may or may not belong to M) if for each open set U containing p, 
there is an open U' containing p and lying in U such that TJ' • M is connected. (See 
R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloquium Publications, 
vol. 32.) An open subset of a compact space is uniformly locally connected if and only 
if it is locally connected at every point of its closure; the notion of local connectivity 
used in Theorem 1 therefore is equivalent to the more cumbersome notion of uniform 
local connectedness. 

8 This is a strengthened form of a theorem of R. L. Wilder, loc. cit. Theorem III 
3.5; Wilder's theorem states that if R and R' are open subsets of a Peano space and 
Reilt', then there is a uniformly locally connected open set R" lying between R 
andtf'. 

9 The mesh of a collection G of sets is the least upper bound of the diameters of the 
elements of G. 

10 If G is a collection of sets, then G* is the set of all elements of elements of G. 
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of B is a finite collection G of open sets covering B such that for each g 
of G, g-D is connected. 

DEFINITION D. Suppose that U: V and that (1) G is an admissible 
covering of B{U)+B{V) such that (2) DCU+(S-7)+G*. Then G 
is contractible with respect to U and V if there is an admissible covering 
T(G) (where T is one-to-one) having properties (1) and (2) such that 
if g' = T(g)ET(G), then g'Cg.11 T(G) is called a contraction of G. If 
we require merely that g'Cg, then T(G) is a weak contraction of G. 

LEMMA 1. If U:V and Gi and Go satisfy conditions (1) and (2) o/ 
Definition D, and Gr = üT(Go), /Aew tóere is a Gf which is a contraction 
of Go sw£& tóa/ Gj is a contraction of G'. 

DEFINITION E. If U: F(or V:U),G is contractible with respect to U 
and V, G' is an admissible covering of B(U)> and G'ïï>G,12 then a 
jumpless extension of V with respect to U, G, and G' is an open set V' 
such that (1) U:V: V (or 7 : 7 ' : £7). (2) for each point p of 
G*-(D—F') (or of G*- F') there is a g of G such that some com­
ponent of g'(D-V') (or of g- V') contains p and has a limit point 
in B(V), and (3) G' is contractible with respect to U and V'. 

DEFINITION F. Let U: V (or V:U) and let T be contractible with 
respect to U and F. Let € be a positive number. Then U is said to be 
^-approachable from V through V if there is an open set V' and a col­
lection G which is contractible with respect to U and V' such that 
(1) U: V'\ V, (or V: V':U), (2) G » I \ (3) G has mesh less than e, and 
(4) V' is a jumpless extension of V with respect to U, T, and G. Under 
these conditions, F' is an ^-approach to U through T. 

LEMMA 2. Let U: F, let Gj and G0 be contractible with respect to U 
and V such that Gi is a contraction of G0, and let e be a positive number. 
Then there is a set U' and a collection T which is contractible with re­
spect to U and V such that (1) T is a contraction of G0, (2) Gi is a weak 
contraction of T, (3) if y and g are corresponding elements of Y and Gj 
under the appropriate weak contraction, then no point of B(U) is a limit 
point ofy—g> (4) Uf is a jumpless extension of U with respect to V, T, 
and r,13 and (5) U' is e-approachable from V through I\ 

PROOF OF LEMMA. Let G' be an admissible covering of B(U) and 

11 For reasons of typographical convenience, the superior bar, indicating closure, 
has not been placed over primes or subscripts. For example, | ' , G*t and Üi are the 
elesures of g', G*, and Z7i. 

12 Gf^>G means that G' is a closure refinement of G\ that is, the closure of each 
element of G' lies in some element of G. 

13 Here T plays the parts of both the G and the G' of Definition E. 
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let TFbe an open set such that (1) U: W: F, (2) G' is contractible with 
respect to U and IF, (3) G'*-B{V) is empty, (4) G '»Gj , and (5) the 
mesh of G' is less than e. Let Z be the interior of the set of all points p 
of D — U for which there does not exist a g of Gi such that some 
component of g-(D— U) contains p and has a limit point in B(V). Z 
is clearly open, and no point of B(V) is a limit point of £/" = W+Z. 
Let G " be an admissible covering of B{U") and a closure refinement 
of Gi, of mesh such that G"*-£(F) is empty. Let G be G'+G". 

It is now true that there is an open set £/', and a collection T such 
that £7', T, and G satisfy the conclusion of the lemma. Let X be an 
open set such that U":X: V and G is contractible with respect to 
U" and X. Let T be a collection satisfying (1), (2), and (3) of the 
conclusion of the lemma, and having the further property that for 
each 7 of T all but a finite number of components of g • (D — X) either 
lie in G* or have a limit-point in B(V). (Note that to obtain each y 
of T from the corresponding g of G/, we need only add to g the sum of 
a finite number of sufficiently small neighborhoods of points of the 
boundary of G*.) If one of these exceptional components can be con­
nected to B(V) in g- (D — X) merely by making the set X smaller, we 
do so. The hypothesis for Z shows that by repeating this process a finite 
number of times, we obtain the desired U'. 

DEFINITION G. If U and g are sets, then N(U, g) is the number of 
components of Ug. If U is a set and G is a collection of sets, then 
I(U,G) is T,oGGN(U,g). 

LEMMA 3. If U'.Ui'.Vo'.V and G0 and Gr = jT(G0) are contractible 
with respect to U and V, then there are sets U' and V', and a collection 
G which is contractible with respect to U and V such that (1) U:U' 
• Uil F 0 : V: F, (2) Gi and G are contractions of G and G0 respectively, 
and (3) / (£ / ' , G) and I{D-Vf

1 G) are both finite. 

PROOF OF LEMMA. Let g belong to Gi. Since g-D is connected, each 
component of Ug has a limit point in g-B(U). Let Hg be a finite 
collection of open sets such that (1) for each h of Hg, h-D is con­
nected, (2) if hÇiHg and g'ÇzGi> then B{h) intersects B(g') only if 
h intersects B(g')t (3) h-B(Ui) is empty, (4) H0 covers g-B{U), (5) 
if g' and g" belong to G/ and G0 respectively and g' lies in g", then no 
element of H0 contains a point of B(Gr) and a point of B(g"), and 
(6) there is a collection Z(Hg) having properties (1), (2), (3), (4), and 
(5) such that for each h of Hgi h lies in Z{h). (Here Z denotes a trans­
formation throwing Hg onto Z(Hg).) 

Now let Ug be the sum of U and the elements g of H0 which inter­
sect g- U. Let Y{g) be g+ VQ. For each g' of Gi-g, let F(g') be the 
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sum of g' and the elements of Hg that intersect U-g'. It is now true 
that N(Ug, Y(g)) is finite and !(£/, , Y(Gi-g))£I(U, d-g). More­
over, there is a collection F'(Gr), of which Y(Gi) is a contraction, 
which has all the same properties, such that Y'(Gi) is a contraction 
of Gi and G0 is a contraction of Y'(Gi), with respect to C/ and F, 
and also with respect to U0 and V. 

Clearly, by a finite number of such operations, first for U and then 
for V, we obtain the sets C/', V' and the collection G required in the 
conclusion of the lemma. 

DEFINITION H. Let U\\ Ui and let G be contractible with respect to 
U\ and C/2. Then for each g of G, the index Ind (C/2, C/i, g) of C/2 with 
respect to C/i and g is the number of components of g • C/2 that have a 
limit point in B(Ui) ; and the index Ind (272, Ui, G) of Ui with respect 
to U\ and G is ]CoEG ^n^ (^2, 1̂» £)• (Obviously Ind (C/2, CA, G) 
g /(C/2, G).) An analogous definition of Ind (C/2, C/i, G) may be given 
for the case C/2:C/3.

14 

With the help of the above lemmas, we may now define a sequence 
C/i, C/2, • • • of open sets and a triangular sequence Gij of finite col­
lection of open sets (i = l, 2, • • • ;j = i, i+lt • • • ) satisfying the 
following conditions : 

(1) For each i, £ƒ»•: C7,-+2 • C/»+i or C/»+i*. C/»+2* C/t-, according as i is odd 
or even ; 

(2) For each i, j , Gifj is contractible with respect to Ui and C/̂ +i 
and is of mesh less than 1/i; 

(3) Gt,y^>G,_i,t„i (if the latter is defined) and is a weak contraction 

(4) For each iy Ui is a jumpless extension of C/t_2 with respect to 
Ui-i, Gt_i,$_i, and Gt-,<; 

(5) If iSjj i^ky then Ind (Uk, Uk-u Gij) is finite; 
(6) If g belongs to G»,y, g' is the corresponding element of Gij+i 

under the appropriate weak contraction, and i'>i, then gr contains 
the closure of g-B{Ui>)\ but no point of B(Ui) is a limit point of 

(7) If g belongs to dj, g' belongs to Gi>t$' (i'>i), and g-g' is not 
empty, then T~l{g) contains g', where T is the appropriate weak 
contraction; and 

(8) Subject to all the above conditions, given Uu C/2, • • • , Un 

14 To be exact, if UzjJJi and g belongs to G, then Ind (C/2f U\, g) is the number of 
components of g- (D—U2) that have a limit point in B(Ui),and Ind (U2t Ui, G) is 
5 ] J Ç O Ind (f/2, U\t g). As in several of the definitions and lemmas given above, we 
have a sort of duality relation in which certain sets U, V are replaced by the comple­
ments (in D) of their closures. 
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and dj (i^n, j^n), the immediately following terms Un+i and 
Gi,n+i (i^n+l) are chosen so as to minimize the numbers 
Ind (C/n+i, Un-u Gi.n+i) =f(i) in the order of increasing i\ that is to 
say, of all possible succeeding terms which satisfy (l)-(7) and which 
can be continued to give a complete sequence satisfying ( l )-(7), we re­
strict ourselves to those for which ƒ(1) is minimal; among the latter 
possibilities, we limit ourselves to those for which /(2) is minimal, 
and so on. 

Of course we must start the sequences so that RlUil Uz'.R'. Let Gt-, 
for each i, be the collection obtained by adding together the ascend­
ing sequences of corresponding elements of the collections G»,,. Let 
R" be the sum of the sets E/if-i. Then B(Rn) is the common part of 
the sets G*. 

One reason for using the triangular sequence Gij rather than a 
simple sequence is that in order to obtain finite indices satisfying (5), 
we may need to enlarge our coverings slightly. On the other hand, in 
passing from Ui to E/i+i, we do not need to enlarge the coverings in 
the neighborhood of B(Ui), so that (6) can be satisfied. Note that (6) 
implies that (9) Ind (Ui+2k, U%, Giti+kr) is a nonincreasing function 
of k and k' simultaneously. Note also that (4) and (7) imply that (10) 
for kt k'>0, Ui+2k is a jumpless extension of Z7»_2 with respect to 
Ui-i and Gi,i+k-

It is clear that if there are sequences satisfying conditions ( l)-(7), 
then there are sequences which also satisfy (8). To show that such 
sequences exist, we shall make use of an auxiliary triangular sequence 
Hij which is to satisfy conditions (l)-(6) and also: 

(7') If h belongs to Hij, Z is the sum of two intersecting closures 
of elements of Hi'j* (ir>i) and h intersects Z, then T~l(h) contains 
Z, where T is the weak contraction throwing Hij into Hij+i. 

We shall assume that Ui and Hitj have been defined for iSj<n 
and that G,-,y has been defined for i rgj ^ n — 2, and show that they may 
be extended a step further. In the transitivity step we shall assume 
that n is odd, the corresponding argument when n is even being 
entirely analogous. 

We first define all the immediately succeeding terms of the H- and 
G-sequences except for Hn,n and Gn-i,n-i, so as to satisfy (l)-(7) 
and (7'). Given these, let e be a positive number such that any set 
Hn,n with mesh less than e will satisfy (7')« By Lemma 2, let Un-i 
be a set and let Hn^i,n-i be a collection satisfying all the hypotheses 
for iln_i,n_i such that U^i is a jumpless extension of Un-i with re­
spect to Vn-% #»-i,n-i> and Hn^i,n-ii and such that Un-i is c-ap-
proachable from Un-2 through iï»-i,n-i- Let Hn,n be an admissible 
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covering of B(Un^i), with the required finite indices, and let Un be an 
open set such that the mesh of Hn>n is less than e, and such that Hn,n is 
contractible with respect to U„-i and Z7W. Let Gn-_i,w-i be the set ob­
tained by replacing each element h of Hn-i,n-i by the sum g of h and 
all elements of Hnin that intersect h. By (10), 27n-i is a jumpless 
extension of Un-z with respect to Un-2, Gn-2, and Hntn. We are now 
in the same position as before, with n replaced by n+1. 

LEMMA 4. Let p be a point of g-B(R"), where g belongs to some Gt% 
Then there does not exist a sequence &, C2, • • • of components of 
R"-g and a sequence pi, p2, • • • of points such that f or each j , pj be­
longs to Cj, and such that p is the sequential limit point of the sequence 
Ply p2, ' ' ' -

PROOF. Since R" gis locally connected, it contains no point of the 
limiting set of the C-sequence. Let n be a natural number such that 
if g' and g" belong to Gn and have a point in common and pÇzg', 
then g"(Zg. Let P be the sum of all such elements g' of Gn. For each 
2i+l greater than n, J3(£/2*+i) intersects P , and P is the sum of two 
mutually separated sets H and K, H containing P-B(U2i+i) and K 
intersecting a term of the C-sequence. This contradicts condition (10) 
for the ÎZ-sequence. 

LEMMA 5. Let p and g be as in Lemma 4. Then there do not exist two 
components C and C' of Rn -g, each of which has p as a limit point. 

PROOF OF LEMMA. Assume that the lemma is false, let n be an 
even integer, and let gn be an element of Gn,n containing p. Let k be 
the least odd integer for which gn contains a point of C-B(Uk) and 
a point of C' -B(Uk). Then C and C' contribute a count of at least 
two to Ind (Z7*+2, Uk, Gn,k+2). We shall show that if the lemma is 
false, then Z7&+2 did not satisfy condition (8). 

Let Gn,*+i be Gn,A;+2. Let G£+i,t+i be a certain Gm,m, m being an odd 
number, sufficiently large so that condition (7) will be satisfied. Let P 
be an open set containing p and lying in an element of Gm>m such that 
PD is connected, and such that P lies in C/w+3. Replace Uh+2 by 
some odd-numbered element of the Z7-sequence which intersects P. 
By this process Ind (C/fc+2, Uk, Gn,k+2) has been reduced. But given 
any e, we may choose P and f/jt+2 so as to make Ul+2 e-approachable 
from f/fc+1 through Gm,m, so that the sequence can be continued satis­
fying conditions ( l ) - (7) . Ind (Ü7&+2, Uk, Gn,k+2) was therefore not 
minimal, which contradicts condition (8), and the lemma is proved. 
The theorem now follows immediately. 

DEFINITION 1. Let 5 be a Peano space and let G be a finite collection 
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of mutually exclusive connected open sets such that G* is S. Then G 
is a connected grating decomposition of S. If the elements of G are uni­
formly locally connected, then G is a grille decomposition of S. Two 
elements of G are adjacent if they have a boundary point in common. 
If Gi, G2, • • • is a sequence of connected grating (or grille) decom­
positions of 5 such that each term of the sequence after the first is a 
refinement of its predecessors, and such that for each positive e, only 
a finite number of terms of the sequence have mesh greater than €, 
then the sequence Gi, G2, • • • is a complete sequence of connected 
grating {or grillé) decompositions of S. 

THEOREM 2. Every Peano space has a complete sequence of grille 
decompositions. 

PROOF. Let H and H' be finite coverings of 5 by open sets such that 
H'^>H. Let h and h' be elements of H and H' respectively such that 
h'Qh. We now have the hypothesis of Theorem 1 satisfied with D = 5. 
Let gi be the set R" of the conclusion of Theorem 1 such that hf:gx:h. 
Now let the D of Theorem 1 be 5—g\\ we choose another element of 
i ï ' , and an element of H containing its closure; and we proceed as 
before to obtain a set g2 which contains h" D. At each stage, we let D 
be the complement of the closure of the sum of the sets gi previously 
obtained. Finally we let G\ be the set of all components of the sets gi. 
To obtain G2, we work with the elements g of G\ one at a time, starting 
the process for each g by letting D = g. 

DEFINITION 2. Let Gi, G2, • • • be a complete sequence of connected 
grating decompositions of the Peano space 5 ; and let gÇzGi. Then the 
border Bord (g) of g is the set of all elements gf of Gt+i that lie in g 
and have a boundary point in common with /3(g). The core Core (g) 
of g is the set of all elements of Gt+i that lie in g but do not belong 
to Bord (g). 

DEFINITION 3. A chain is a finite collection C of mutually exclusive 
open sets c\f £2, * • • , Ck, such that the sets d and Cj have a boundary 
point in common if and only if i and j are identical or consecutive 
integers. The end-links of the chain are C\ and c*. If x and y are points 
of C\ and Ck respectively (or of c\ and dk respectively), then C is a chain 
from x to y (or a chain spanning x and y). H H and K are sets inter­
secting c\ and Ck respectively, then C spans H and K. 

DEFINITION 4. A complete sequence of connected grating decom­
positions is core-wise connected if for each g of each G» and for each 
pair g', g" of elements of Gt+3 lying in g, there is a chain of elements 
of Gt+x, having g' and g" as its end-links, such that C—g'—g" lies 
in Core (g). 
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THEOREM 3. Every Peano space has a core-wise connected complete 
sequence of grating decompositions. 

PROOF. Let Gj, G2, • • • be a complete sequence of connected grating 
decompositions of the space S. Let g be an element of G\. By deleting 
a finite number of terms of the G-sequence, if necessary, we may 
arrange for Core (g) not to be empty. Let x be a point belonging to an 
element of Core (g). For each h of G2 lying in g, let Xh be a point of h. 
Let A be a collection of arcs from x to the points Xh, not intersecting 
/3(g). Let n be an integer such that if gn belongs to Gn, then gn does 
not intersect both A* and /3(g). Let Z be a collection of chains of 
elements of Gn, no links of which have boundary points in common 
with j8(g), and which contain x and the points Xh in the closures of 
their end-links. (Note that x and the points Xh do not necessarily 
belong to G*.) For each h of Bord (g), let Gh be the set of all com­
ponents of A — Z** that have a boundary point in /3(g). Since each h 
is connected, each element of Gh will have a boundary point in Z**. 
Let Gft be the set of all components of h — G*. Now let G be the sum 
of Core (g), the sets G ,̂ and the sets GjJ. 

Let G{ be Gi and let Gi be G. G/ is clearly corewise connected and 
the same process may be repeated to give a complete sequence. 

THEOREM 4. Every Peano space can be given a convex metric. 

PROOF. Let Gi, G2, • • • be a complete sequence of core-wise con­
nected grating decompositions of the space S. We shall define a certain 
subsequence G{, Gi, • • • of the G-sequence. For each g of each Gt, 
we shall define a real number 5(g). For each two points x, y of 5, we 
shall let di(x, y) be the least real number d for which there is a chain 
C: C\, C2y • • • , Ck of elements of G/ such that x and 3/ belong to di and 
CA; respectively, and such that the length 1(c) = ^8(CJ) °f the chain C 
is equal to d. 

For each g of G( =Gi, let 5(g) = 1 . 
Now suppose that G{, • • • , G/ have been defined as a subsequence 

of the G-sequence and the S function has been defined for each of 
their elements. Let Gi+1 be a term of the G-sequence following G/ 
such that no element of G/ has an empty core and satisfying a 
second condition which we shall state presently. Let p be the number 
of elements of G*+i and let rj be 2~i"2/p. For each g of G/ and each 
b of Bord (g), let 8(b) be (1/2)(5(g)-77). Let q be the number of ele­
ments of Core (g), and for each c of Core (g), let 8(c) be rj/q. The 
second condition imposed on G/+1 is that with the above definition of 
5, any chain of elements of G(+i which consists entirely of elements of 
the borders of elements of G/ and spans two non-adjacent elements 
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of Gi shall have length greater than that of any chain of Gi. Since S 
is an increasing function of p on the borders of elements of G/, this 
condition may be satisfied merely by going out far enough in the 
G-sequence. 

Let m be the least of rj and all numbers 2(6), for each c of each 
Core (g), let 5(c) ~m/p. 

LEMMA 1. Let x and y be points of S and let i be an integer such 
that no chain of elements of Gi of less than five links spans x and y. For 
each j greater than i, let dj' (x, y) be the length of the shortest chain of 
elements of G ƒ which spans the sum of (1) the set of all points xfor which 
there is a two4ink chain of elements of Gi spanning x and x' and (2) 
the set of all points y' for which there is such a chain spanning y and y'. 
Then Dj'+1(x, y) è (\-2^)dj' (*, y). 

PROOF OF LEMMA. Let C' be a chain of elements of Gj+1 spanning 
(1) and (2) and let C be the set of all elements of Gj that contain one 
or more elements of C', with the ordering naturally induced by that 
of C'. If we can show that each c of C contains two links of C' that 
belong to Bord (c), the lemma will be proved. Suppose that there is a 
c of C which does not have this property and let Cc be a subcollection 
of C which is maximal with respect to being a segment of consecutive 
elements of C none of which have the property. Then every element 
of Cc is adjacent to every other element of Cc and has a boundary 
point in common with (1) or (2).16Suppose, without loss of generality, 
that each element of Cc has a boundary point in common with (1). 
It follows that the first element C\ of C that follows all elements of 
Cc also has a boundary point in common with (1); and this c\ con­
tains two links of C' that lie in Bord (ci). But there is an element of 
Bord (ci) that has a boundary point in common with (1); C' may 
therefore be modified in an obvious manner so as to reduce its length, 
which contradicts our hypothesis. 

LEMMA 2. If x and y are different points of 5, then d(x, y) =limtH>00 

dl (x, y) exists and is positive. 

PROOF OF LEMMA. Since, for fixed x9 y, di is a diminishing function 
of i, we need only show that its limit is not zero. It is obvious that dj 
is not less than any dj' of the type defined in Lemma 1 ; our result 
therefore follows directly from the convergence of the infinite product 
11(1-2-0. 

LEMMA 3. If x is the sequential limit of the sequence xi, %2, • • • 

This can be shown by an argument like the one immediately following. 
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of points of S, then \imi+wd(x, #») =0, and conversely. 

LEMMA 4. If x, y, and z belong to 5, then d(x, y)+d(yt z) ̂ d(x, z). 

LEMMA 5. If x and z belong to 5, then there is a point y such that 
d(x, y)=d(y, s) = (l/2)d(x, z). 

PROOF OF LEMMA. By the construction of the distance function, it 
is clear that for each i there is a point yi for which the required 
equalities hold with an error of less than 1/i. Any point y which 
appears infinitely often in the sequence, or which is a limit point of 
^2y<i satisfies the conclusion of the lemma. 

It follows that d is a convex metric. 
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