ON A PROBLEM OF MAX A. ZORN

RIMHAK REE

1. Introduction. Max A. Zorn has proved the following theorem.

THEOREM. If every substitution x = at, y = bt in which a and b are complex numbers transforms $\sum a_{ij}x^iy^j$ into a power series with a nonvanishing radius of convergence, the series $\sum |a_{ij}x^iy^j|$ converges for sufficiently small |x| and |y|.

He has also suggested the following problem. If $\sum a_{ij}x^iy^j$ is a power series which is transformed by every substitution of convergent power series $\sum_{i=1}^{\infty}a_{i}t^i$ and $\sum_{i=1}^{\infty}b_{i}t^i$ with real coefficients for x and y into a convergent power series in t, is the double series $\sum a_{ij}x^iy^j$ convergent?

The answer is yes. In fact, Zorn's theorem itself holds even when the coefficients a and b are restricted to take only real values. We can obtain a proof quite directly by Zorn's method, if we use an estimate for the coefficients of homogeneous polynomials in real variables.

2. Homogeneous polynomials in real variables. We shall prove a lemma which may easily be extended to the case of many variables.

LEMMA. Let $P(x, y) = \sum_{i+j=n} a_{ij}x^iy^j$ be a homogeneous polynomial in real variables. If $|P(x, y)| \leq M$ for $|x-x_0| \leq 2\delta$, $|y-y_0| \leq 2\epsilon$, then $|a_{ij}\delta^i\epsilon^j| \leq M$.

PROOF. Set $x = x_0 + \delta(\xi + \xi^{-1})$. Then $\xi^n P(x, y) = \sum a_{ij} \xi^i(\xi x)^i y^j$ is a polynomial in ξ whose absolute value does not exceed M when ξ moves on the unit circle of the Gaussian plane. By Cauchy's inequality of function theory, and considering the coefficients of ξ^k in $\xi^n P(x, y)$, we have

$$\left| \sum_{j=0}^k a_{ij} c_i y^j \right| \leq M,$$

where $0 \le k \le n$, i+j=n, and c_i is the coefficient of ξ^{k-i} in $(\xi x)^i$.

Again set $y = y_0 + \epsilon(\eta + \eta^{-1})$ and apply the Cauchy inequality to the constant term of $\eta^k \sum_{j=0}^k a_{ij} c_i y^j$. We have

$$\left| a_{lk}c_{l}\epsilon^{k} \right| \leq M,$$

where l+k=n and c_l equals δ^l by definition. This completes our proof.

Received by the editors May 10, 1948.

¹ Bull. Amer. Math. Soc. vol. 53 (1947) pp. 791-792.

576

3. Proof of Zorn's theorem in the real case. Now we can follow Zorn's method directly.

PROOF. Let $P_n(x, y) = \sum_{i+j=n} a_{ij}x^iy^j$. The set D of vectors (x, y) for which $\sum P_n(x, y)$ converges is of the second category. For every vector is $\operatorname{in}^2 mD$ for some positive integer m. If D were of the first category, the set mD and therefore the two-dimensional Euclidean space would be the same character.

By virtue of the continuity of the functions P_n there will exist a square $|x-x_0| \le 2p$, $|y-y_0| \le 2p$, p>0 and an M such that $|P_n(x, y)| \le M$ holds in the square for all n. Then by our lemma $|a_{ij}p^{i+j}| \le M$, Hence for |x|, $|y| \le p/2$, we have

$$\left| a_{ij}x^iy^j \right| \leq M/2^{i+j}$$

which establishes the absolute convergence of the double series.

SEOUL UNIVERSITY, KOREA

² mD is the set of (mx, my) where $(x, y) \subseteq D$.