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If & ^ 1 for each v, then by reasoning analogous to that of the pre­
ceding example, it may be shown, for any set (a), that there is no 
point p such that t<p implies that log St{a, £) is convex nor a point 
p such that t>p implies that log St(a, £) is concave. Hence Theorem 4 
applies to all such functions log St(a, £). However, for this case the 
conclusion of the general theorem is weaker than the known result 
that log St(a, £) is convex for all positive t and concave for all nega­
tive L2 
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2 See Beckenbach, An inequality of Jensen, Amer. Math. Monthly vol. 53 (1946) 
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HOMOMORPHISMS ON BANACH SPACES 
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1. Introduction. Let £ be a Banach space and E* its conjugate 
space. Let G be a closed linear subspace of E, and let T = {ƒ|ƒ£E*, 
f(x) = 0 for x g G J . Krein and Smulian have shown [4, Theorem 12']1 

that G * = E * / r in the sense that the two spaces are algebraically 
isomorphic and that the usual definitions of norm in the two are 
equivalent. Noting the algebraic isomorphism, let us look at the topo­
logical aspects of this equivalence in a slightly different light. G* being 
a factor space of E*, there is defined a natural homomorphism [5, 
p. 64] r (E*)=G*. Since they are using the induced topology [5, p. 
58] in E*/T, Krein and Smulian prove what is equivalent to the 
theorem that the transformation T is continuous and open (see [S, 
Theorem 12]). Stated in this way, incidentally, the result follows im­
mediately from the Hahn-Banach theorem by means of the usual 
neighborhood argument for continuity and openness. 

However, the homomorphism T(E*) = G* suggests other topo­
logical questions the answers to which are not quite so obvious. 
Specifically, what are the topological properties of T when E* and G* 
are given topologies other than their norm topologies? 

The conjugate to a Banach space may be topologized in any one 
of several well known ways. The most common such topologies are 
the norm, weak, weak*, bounded weak and bounded weak*. We shall 
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use these terms in connection with properties of T to designate the 
property mentioned when both E* and G* have the topology men­
tioned. For example, the statement, UT is weak* continuous," means 
that T is continuous when E* is given its weak* topology and G* is 
given its weak* topology. 

2. Notes on weak topologies. Before proceeding, let us review the 
definitions and some of the properties of the various weak topologies 
of a conjugate space E*. 

DEFINITION 2.1. A directed set {/«}CE* has ƒ GE* as its weak* 
limit provided lima fa(x) =ƒ(#) for every x £ E . This topology is de­
scribed by the neighborhoods of the origin C/(cr, e) = {ƒ| |fix) | <e for 
#£cr} where a* is a finite set in E and e>0 . 

DEFINITION 2.2. A directed set {/«}CE* is weakly convergent to 
/ G E * provided lim« X(fa)=X(f) for every XGE**. Neighborhoods 
of the origin for this topology are 17(2, e) = {/| | X(f)\ <e for X G S } 
where S is a finite set in £** and e > 0. 

Bounded weak* and bounded weak topologies are obtained from 
definitions 2.1 and 2.2 respectively, if the provision is added that 
{ƒ«} converges to f only if there is a number K such that ||/«|| ^K for 
every a. 

For sequences, the notions of weak* and bounded weak* conver­
gence are equivalent, as are those of weak and bounded weak con­
vergence, because convergent sequences are necessarily bounded [2, 
pp. 80, 123], However, this is not true for directed sets in general. 
Every conjugate space is boundedly weak* complete; but Alaoglu 
has shown [l, p. 254] that if E* is infinite-dimensional, it is not weak* 
complete. An example similar to Alaoglu's shows that if £* is infinite-
dimensional, it contains a directed set weak* convergent to the null 
functional for which no bounded subset has the null functional as a 
limit point. 

Let { } be a sequence of linearly independent ele­
ments of E with ||#»|| = 1 for each i. Let the finite-dimensional sub-
spaces of E be partially ordered by means of the inclusion relation­
ship. These subspaces {Ga} then form a directed set. We form a cor­
responding directed set {/ a}CE* as follows: if Ga is w-dimensional, 
at least one of the points X\% #2, • • • , xn+i lies outside it ; hence 
[2, p. 57] there is a functional ƒ« which is zero on Ga and equal to 
n at this point. Thus ||/a | | ^n. Clearly lima fa(x) = 0 for every x £ E , 
but the neighborhood U(crn+iy 1)—an+i= {xiy x2, • • • , xn+i}—con­
tains no member of {ƒ«} with norm less than n. 

An analogous construction will demonstrate the non-equivalence 
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of weak and bounded weak convergence in infinite-dimensional 
spaces. 

With regard to closure of linear subspaces, however, the picture is 
slightly different; and it is here that the weak* topology comes into 
its own. For linear subspaces of E* the notions of weak* and bounded 
weak* closure are equivalent. Furthermore, they are equivalent [l, 
Theorem 1.4] to regular closure, defined by Banach as follows: 

DEFINITION 2.3. A linear subspace T of E* is regularly closed pro­
vided to every ƒ G-E*—r there corresponds an x£ .E such that ƒ (x) » 1 
and g(x) = 0 for every g £ I \ 

Equivalence of weak* and bounded weak* closure for linear sub-
spaces seems to be known [3, p. 52]. The proof is contained in the 
work of Alaoglu [l, p. 256], but the result is not noted there. Alao-
glu's proof that regular closure implies bounded weak* closure makes 
no use of boundedness. Thus weak* closure may be inserted between 
regular and bounded weak* closure in his chain of implications. It 
might be remarked in passing that in his discussion of these relation­
ships for the case of separable E, Banach occasionally speaks of sets 
with no qualification when he means linear sets [2, Theorem 5, p. 121 
and summary of results, p. 126]. 

Finally, we recall one of the most important properties of the weak* 
topology : 

THEOREM 2.4 (Alaoglu [l, Theorem 1.3]). The unit sphere in E* is 
bicompact in the weak* topology. 

3. Topological properties of the homomorphism T. Returning now 
to the natural homomorphism of E* onto G*, we first investigate the 
questions of continuity and openness. Continuity is obvious in each 
case: hence we state without proof: 

THEOREM 3.1. T is norm continuous, weakly continuous, boundedly 
weakly continuous, weak* continuous and boundedly weak* continuous. 

As noted in the introduction, due to the work of Krein and Smu-
lian, we may add: 

THEOREM 3.2. T is norm open. 

For use in subsequent proofs, we introduce the operation © to 
denote the direct sum of sets in E (or £*, as the case may be). A ®B 
= {x\x — a+b, aÇ^A, bÇJB\. 

THEOREM 3.3. T is weak* open. 

Let U(<T, e) be any weak* neighborhood in E*. To prove that T is 
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weak* open, we must show [5, p. 59] that T[U(ay e) ] contains a weak* 
neighborhood in G*. Specifically, we shall construct a set TQG such 
that T[U(cr, e)]Z)U(Ty e). If, as in the introduction, we denote the 
denominator subspace by T, this means that having constructed r, 
we must show that to every ƒ G U(T, e) there corresponds a gÇzT such 
that f+gGU(a}e). 

The set r is constructed as follows: <r being a finite set, it is con­
tained in a finite-dimensional subspace 5 of E. S being finite-dimen­
sional, the factor space (S@G)/G is finite-dimensional and there­
fore has a finite basis. Let { } be a set of unit elements 
of S, each chosen from a different member of the basis for (S®G)/G. 
The following are then easily verified : 

(1) If x£(r , x*=yx+ ]C5-ia;xy> where yx(EG and the aj are real co­
efficients (depending, of course, on x). 

(2) For each i (i = l, 2, • • • , k), Xi lies outside the closed linear sub-
space G@Si, where Si is the subspace generated by 
Xi+1, ' # • , Xfy. 

We now define r to be the set of all yx (see (1)) for X £ Ö \ NOW given 
any/G-E*, it follows from (2) and a familiar property of closed linear 
subspaces [2, p. 57] that there exists g t-G£* such that gi(y)s=:0 for 
y<EG®Si and &(*<) = -ƒ(* , ) . We let g = XXigiî then g G I \ and the 
expansion in (1) immediately yields the result that if x£.<r,f(x) +g(x) 
= / ( ^ ) . H e n c e / G t / ( r , e) implies f+gEU(<r, e). Q.E.D. 

THEOREM 3.4. T is weakly open. 

Krein and Smulian have shown [4, Theorem 13] that G** is a sub-
space of E**. As a matter of fact, it is a regularly closed subspace, 
as is seen immediately from the construction they give for it and a 
remark of Banach's [2, p. 117]. Armed with this information, we can 
reverse the roles of elements and functionals and proceed as in the 
proof of Theorem 3.3. The only difference is that we use regular 
closure instead of Banach^ lemma to guarantee the existence of the 
gi. This calls for regular closure of subspaces of the form G**©5» 
where Si is finite-dimensional. This follows immediately from regular 
closure of G** if we replace regular closure by weak* closure and con­
sider limits of directed sets. 

There remain the questions of bounded weak and bounded weak* 
openness for T. The construction given in the proof of Theorem 3.3 
does not answer these. The norm of each gi may be as large as the 
norm of/; hence the bound on norms might conceivably have to be 
multiplied by the number of elements in <r. We do not have an exam­
ple handy to show that this unfavorable situation can actually oc-
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cur; but because of the equivalence of the bounded and unbounded 
closures for linear subspaces, this point can frequently be by-passed 
(see Theorem 3.5 below). 

The transformation T is not closed with respect to any of the topol­
ogies considered. This is shown by a very simple example. Let E* be 
Euclidian 2-space, and let T be the y-axis. Then G* is the x-axis and 
T is the orthogonal projection transformation. Consider the closed 
setA = {(x, y)\x>0,y>Q, xy^l}. Then T(A) = {x\x>0} which is 
not closed. The five topologies are equivalent here; so this example 
answers all five questions. Note that the set A above is convex; so 
we cannot say even that T is closed for convex sets. 

The theorems on openness of T may be used to prove closure by 
taking complements, provided we first take complete inverse images. 
Now T~l [r(A) ] = A © r ; thus we can show that 7\A) is closed by show­
ing that 

(A) A © r is closed, and 
(B) the topology used is one of those discussed in Theorems 3.2, 

3.3 and 3.4 or is equivalent to one of these for sets of the type A©T. 
Using this technique, we arrive very easily at the following results: 

THEOREM 3.5. 1. For linear subspaces, T is (a) weak* closed, 
(b) boundedly weak* closed. 

2. For compact sets, T is closed with respect to each of the five topol­
ogies. 

3. For bounded sets, T is (a) weak* closed, (b) boundedly weak* 
closed. 

Statements 1(a) and 1(b) are equivalent. For 1(b), the condition 
(A) is satisfied because unit spheres are bicompact (Theorem 2.4), 
and the direct sum of two bicompact sets is bicompact, hence closed. 
Turning now to 1(a), we see that Theorem 3.3 applies to this to­
pology. Thus condition (B) is also satisfied. 

To prove 2, we note that the direct sum of a compact set and a 
closed set is closed. The openness theorems then dispose of three cases 
immediately. To cover the cases of the bounded topologies we note 
that for sets A©T where A is compact, every limit point is the limit 
of a bounded subset. Every point is of the form f+g where ƒ GA and 
g E T . Since A is compact (henced bounded), the / ' s are automatically 
bounded ; and since T is linear, the g's may be replaced by a bounded 
subset. 

Finally, we note that 3 reduces to 2 by means of Theorem 2.4. In 
connection with 3, we might point out that weak* closure of T for 
bounded sets is quite a different thing from bounded weak* closure 
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of 3H. The natural homomorphism has the first of these properties, but 
not the second. 

The most obvious unanswered questions are those of norm and 
weak closure of T for linear subspaces. By means of Theorems 3.2 
and 3.4, these are reduced to questions of closure of direct sums; but 
the compactness arguments of Theorem 3.5 must be replaced by 
others. 
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