
APPROXIMATION BY POLYGONS AND POLYHEDRA 
LÂSZLO FEJES TÓTH 

In order to investigate as to what order of magnitude a plane (or a 
skew) curve can be approximated by w-sided polygons, we have to 
start from a definition of the deviation. One of the usual definitions 
is as follows:1 the deviation ij(H, K) of two curves H and K is the 
smallest number rj for which H is contained in the neighbourhood of 
K with radius v\ and conversely K is contained in the neighbourhood 
of H with radius rj. By a neighbourhood with radius rj of a plane 
(skew) curve we understand the set of the points of all the circles 
(spheres) with radius t\ whose centres are the points of the curve. 

This notion of deviation satisfies the usual requirements; for ex­
ample, the triangle inequality is satisfied, that is, if H, K and L are 
three curves, then ri(H, K)-\-y}{K, L)^rj(H, L). 

Corresponding to a rectifiable Jordan-curve J, let us construct the 
polygon Pn whose deviation from J is least for all inscribed w-sided 
polygons, Pn: r)(Pn, J)^rj(Pnt J)- If we impose further restrictions 
upon / , the sequence 17 (?i , / ) , 1)0*2, J), • • • will tend towards zero 
with order \/n2, tha t is, the limit value 

1/a = lim inf n2ij(Pn, J) = lim n2rj(Fn} J) 

exists. We shall call a the approximability of J by inscribed2 polygons. 
a is a constant which depends only on J . The approximability of a 
circle of radius r is, for example, a = 2/w2r. 

Interesting problems arise if we consider which curve can be ap­
proximated the worst among a certain class of curves, that is, whose 
approximability is the smallest. We easily obtain,8 for example, that 
among all closed convex curves with continuous curvature of given 

Received by the editors May 15, 1947. 
1 See, for example, Bonnesen-Fenchel, Theorie der konvexen K'ôrper, Berlin, 1934. 
2 Similarly in the case of a convex arc we can define the approximability by cir­

cumscribed polygons, which equals a. The approximability by arbitrary polygons 
equals 2a. In all that follows we restrict ourselves to the case of inscribed polygons 
and polyhedra. 

8 Cf. L. Fejes, Einige Extremaleigenschaften des Kreisbogens beziiglich der Annühe-
rung durch Polygone, Acta Univ. Szeged, vol. 10 (1943) pp. 164-173. Starting from 
a different notion of deviation—the so-called deviation of area—among all convex 
arcs AB lying in the interior of the triangle AOB and enclosing a given area with the 
side AB, the conic arc touching AO and BO can be approximated worst. See L. Fejes, 
Über eine Extremaleigenschaft der Kegelschnittbogen, Monatshefte für Mathematik 
und Physik vol. 50 (1943) pp. 317-326. 
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perimeter the circle, more generally that among all continuously 
curved convex arcs of given length / and total curvature co the arc of 
a circle, can be approximated worst. 

This is an immediate consequence of the explicit formula to be 
proved below, which expresses a by the natural equation of J. We 
shall see that if the curvature G of a rectifiable Jordan-curve J of 
length I is a continuous function of the length of arc s, then 

7 = {(/jGW'"4 
where a is the approximability of J by inscribed polygons.* 

Hence by Schwarz's inequality 

— g, — I ds- \ | G(s) \ds = — lu, 
a 8 J o ^ o 8 

where equality holds only in the case G(s) = const., that is, when / is 
an arc of a circle. 

We shall prove our formula under the more general condition that 
J is a skew curve.* It is worthwhile to note that the torsion of the 
skew curve does not enter into our formula and hence the approxi­
mability is invariant under all transformations which do not alter the 
curvature as a function of the length of arc.6 

First we estimate the deviation rj(pj j) of a chord p from the cor­
responding arc j . For this purpose let us write the equations of j in a 
coordinate system which coincides with the moving trihedron in the 
center of the arc j of length <r:7 

xi = s + s26i(s), 
4 We give two more analogous results without proof, and for the sake of sim­

plicity only for the case of a closed convex curve J : Km n*(t-tn)~(l/l2)(fl
0GV*ds)*, 

lim »2(/—/») « ( 1 / 2 4 ) ( / Q G 2 / 3 ^ ) 3 where t denotes the area of the oval surrounded by J, 
tn the area of the inscribed «-sided polygon having a maximal area, and /» the perimeter 
of the inscribed «-sided polygon having a maximal perimeter. 

Let us observe that f^G1/sds is the "affrne length-of-arc" of J. (See, for example, 
W. Blaschke, Vorlesungen iiber Differentialgeometrie, vol. 2, Berlin, 1923.) 

We mention also without a proof that if we approximate a curve lying on a surface 
by polygons consisting of arcs of geodesic lines, we have to put into our formulas the 
geodetic curvature instead of G. 

8 This extension of my formula was first found by my pupil J. Horvâth but his 
proof was not quite satisfactory. 

6 Such deformations of a curve can be illustrated on a simple model. See Hilbert-
Cohn-Vossen, Anschauliche Geometrie, Berlin 1932, footnote 2, p. 182. 

7 See, for example, A. R. Forsyth, Lectures on the differential geometry of curves and 
surfaces, Cambridge 1912, pp. 10-11. 
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x2 = 2~ lGs2 + s2€2($), - cr/2 ^ s ^ <r/2, 

where G is t h e c u r v a t u r e a t t h e considered poin t a n d €i(s), €%(s), €s(<y) 
are continuous functions of s which vanish for 5 = 0. 

Let us consider at the same time the arc ƒ whose equations are 

Xi = 5, 

X2 « 2~1G$2, ~ cr/2 g 5 ^ cr/2, 

#8 = 0. 

Obviously rj(j>j') can not be greater than the maximal distance of 
two points belonging to the same parameter: 

/ • -A ^ 2/ 2 1 2 . V ' 2 

*?0> ƒ ) ^ max 5 (€1 + €2 + €3) 
=£ (<? /4) max (e\ + e\ + tzf

2 - (<r2/4M*) ; | * | 3 «r/2. 

The deviation of the chord p' connecting both ends of j ' from p has 
the same upper bound: ri(p, pf)^(<r2/4:)e(â) and the deviation of j ' 
from p' is obviously rj(p', j') ^l^Ga2/^. 

Hence from the triangle inequalities 

VÜ, P) =S v(j, / ) + *?(/> #0 + nW> P) 

and 

*?(ƒ > #0 ^ *?(ƒ'» i ) + *(ƒ. P) + liP* P') 

we get &~lGa2-2-l(x2e(â) Srj(p, j) ^8~1Gcr2+2-1(r2€(ff). 
Let us consider now a sequence Pi , P2, • • • of polygons inscribed 

into J so that the greatest among the sides p\, p\ • • • , p\ of P» 
shall tend to zero with an increasing n. By the above inequality for 
any such sequence 

K» t wi for -— f V"*. 
Let us investigate the sequence of polygons for which 

v(pl jl) = i?(Z, Pn) i = 1, 2, • • • , n; » - 1, 2, • • • . 

In this case 

lim »(„(/, Pn))1/2 = - J - f G1 '2^. 
or' J 0 

As iy(7, P») is the maximal among the deviations y(p*,jï), we get for 
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every other sequence 

lim n(n(Jf Pn))112 è — f G^ds, 
o1' J o 

assuming that the limit value on the left side exists. Therefore 

1 rl 

lim inf n(rt(J, Pn))
1/2 » — I Gwds q.e.d. 

We have seen that among all ovals in the plane with given perimeter 
the circle can be approximated worst. The question arises as to 
what can be said about the approximation by polygons consisting of 
arcs of circles. 

Let us restrict ourselves to sketch only the main lines of the proof. 
For the detailed exposition the proof given in the preceding section 
can serve as an example. 

We define the approximability a of a curve J by inscribed circular arc-
polygons by the limit value l / a = lim inf n*rj(Cn, J) where Cn denotes 
a polygon consisting of n arcs of circles whose vertices lie on ƒ. 

Let Cn be the polygon whose deviation from J is least for all poly­
gons Cn. We may suppose that for the arcs of circles c\, C2, • • • , cn 

of Cn and the corresponding arcs, j i , 72, • • • ,jn of J 

v(ciy ji) = IJ(C», / ) , i = 1, 2, • • • , n, 

holds. 
To estimate the deviation rç(c, j) we must also consider the mem­

bers of third order in the canonical equations. Supposing G'(s) to be 
continuous, we have 

Xl = s - 6~lG2s* + • • • , 
- <T/2 g 5 g er/2, 

X2 = 2 - W + ó-iGV + • • • . 

The equations of the circle of curvature at the same point are 

xi**s- ó - ^ V + • • - , « * = 2-KiS* + • • • 

If G '^O, the circle of curvature intersects the curve and the short­
est distances of the circles of curvature from the points of j with 
parameter values s=a/2 and s*= —<r/2 are o-^G' l (cr/2)3+ • • • . Let 
us turn the circle of curvature around the point of intersection so 
that the point with parameter value s~a/2 lies on / . In this case a 
point of the circle with parameter value — a/2+ • • • lies on J too, 
and two points of the arc —<T/2^S^<T/2 of the circle of curvature 
with the parameter values s— ±(l /31 / 2)(<r/2)+ • • -become the 
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most remote ones from / , the maximal distance being (31/2/216) | G'\ <rz 

+ • • •• 
Consequently the arc j can be approximated by a circular arc c 

whose ends are coincident with the ends of j so that 
31/2 

216 

On the other hand, it can be seen easily that this constant is exact. 
Let us take the third root of these equalities involving the arcs Ci 

of the polygon Cn. By summing up and passing to the limit we 
get the theorem: Let J be a plane curve with the natural equation 
G = G(s), Org s 2*/, where G'(s) is a continuous function. The reciprocal 
value of the approximability a of J by inscribed circular arc polygons is 

l 3 1 ' 2 / rl . , V 

7"Self. |G '1"'*)' 
Similarly it can be seen that this same a is the approximability of 

a skew curve by inscribed polygons consisting of arcs of screw lines. 
The approximability of a skew curve by inscribed circular arc poly­
gons is 

1 3 1 / 2 / rl V 

7-2SU. ( | 0 ' | , + < M , > u * ) > 

where T denotes the torsion. 
Making use of Holders integral inequality8 

> b 

we get 

<t>dx; <l>(x) è 0, a g x g b 

— g P I \G'\ds, 
a 216 J 0 

which means that among the plane curves of monotone curvature with the 
length I and maximal curvature M the curve with the natural equation 
G = (M/l)s can be approximated worst by polygons consisting of arcs of 
circles. This curve is the so-called clothoid9 (Cornue spiral) which 
plays an important role in the theory of the interference of light. 

Contrary to the approximability by common polygons, there is no 
8 See, for example, Hardy-Littlewood-Pólya, Inequalities, Cambridge, 1934. 
9 See, for example, G. Kowalewski, NatUrliche Geometrie, Berlin, 1931. 
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oval of given perimeter which can be approximated worst by polygons 
of circular arcs; for, we can easily construct an oval with given 
perimeter out of clothoid arcs whose approximability a is arbitrarily 
small. 

In the following we make no claim for rigour. 
Let us consider an ovaloid 5. We define the approximability A o f S 

by inscribed polyhedra by the limit l/A =lim inf nrj(Qni 5), where Qn 

denotes an inscribed polyhedron having n vertices.10 

We assert that the approximability A by inscribed polyhedra of an 
ovaloid S with continuous Gauss measure of curvature G can be expressed 
by the surface integral of Gll% : 

1 31 '2 r 

A 9 J s 

The same formula holds for the approximability by polyhedric sur­
faces of a part of an elliptically curved surface bordered by a con­
tinuously curved closed curve which does not cut itself. Thus the 
approximability is invariant under all deformations of the surface, 
that is, under the transformations which do not alter the line ele­
ment at any point. 

According to Schwarz's inequality 

1 3 1 ' 2 / r C \1 / 2 31 '2 

where Q~fsGdf is the total curvature of 5, .Fits area. Equality holds 
only for a surface which can be deformed into a part of a sphere of 
radius (F/ti)112. Particularly: among all closed ovaloids with given area 
the sphere can be approximated worst.11 

For the sake of simplicity we restrict ourselves to closed ovaloids. 
Let us consider a small triangle A whose vertices lie on 5 and let A' 
be the small part of S lying near A whose normals intersect A. Let us 
place A in the neighbourhood of a point M of 5, so that, fixing the 

10 We arrive at the same approximability A by replacing the word "vertices" by 
"faces" or "inscribed" by "circumscribed" or both. The approximability by arbitrary 
polyhedra is 2A. 

11 Starting from the notion of deviation of volume, the reciprocal value of the 
approximability is proportional to the square of the "affine surface." (L. Fejes, Über 
die isoperimetrische bzw. isepiphane Eigenschaft der Ellipse bzw, des Ellipsoids, Mate-
matikai es Természettudomdnyi Êrtesftö vol. 62 (1943) pp. 93-94; L. Fejes, Extremâlis 
pontrendszerek a sikban, a gömbfelilleten es a térben, Acta Sci. Math, et Nat. vol. 23 
(Kolozsvâr 1944). Hence by the isepiphane property of the ellipsoid found by Blaschke 
(Vorlesungen über Differentialgeometrie, vol. 2, pp. 198-201) the ellipsoid can be 
approximated worst among all ovaloids of given volume. 
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deviation rç(A, A'), the area of A—which we denote by A too—shall 
be as great as possible. Let the plane drawn parallel to the tangential 
plane at M at a distance r\ meet S in the Dupin's curve D. The 
position of A in question will be given by the maximal triangle in-
scribable in D. 

In the first approximation D can be considered as an ellipse with 
axes (2rjRi)112 and (2t)R2)

112, where i?i and R2 are the two main radii 
of curvature at the point M. Thus the area of the maximal triangle 
inscribable in D is 

3-31 / 2 

Amax - — — (WiRtyi* + • • • , 
4 

that is, for the triangle with area A 

2-31'2 

i?(A,A0 > Gl'2A + 

We can suppose that every face of the polyhedron Qn inscribed in S 
is a triangle, since otherwise we could divide them into triangles. But 
a polyhedron consisting of triangles with n vertices has 2n—4 faces. 
Thus summing up the above inequalities concerning the faces of Qn 

and increasing n indefinitely we get 

2-31'2 r 
2 lim inf nrj(Qni S) £ I GVWf. 

9 J s 
On the other hand the bound on the right side can be attained by 

a suitably-chosen sequence of polyhedra; this completes the proof. 
Let us note that the equality just proved does not hold for hyper-

bolically-curved surfaces. Consider, for example, the part If of a 
hyperboloid of revolution of one sheet which lies between two planes 
parallel to its minimal circular section at the same distances on both 
sides. Let A1A2 • • • An and BiB2 • • • Bn be two regular polygons 
inscribable in the circles bordering H, so that AiBi ( i = 1, 2, • • • , n) 
shall be generators of H. The deviation t\ (H, Qtn) between H and the 
polyhedric surface Qin having the faces A1A2B1, • • • , AnAxBni 

BxB2A2, • • • , BnBiAi is identical with the deviation between 
A\A2 • • 'An and the circle around it; hence its order of magnitude 
is 1/n2 and not l/n. 

Finally we draw a conclusion from our estimation concerning 
y(Qn, S). Let 5 be a sphere of radius R and Qn a system of n points 
on 5. Write the greatest possible spherical calotte sn on S which does 
not contain any point of Qn* 
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If we denote the radius of the circle at the base of sn by rn and the 
least convex covering of Qn by Qn too, then12 

rj(Qn, S)=R-(R2- rl)l,%. 

For small values of rn, this equals rl/2R+ • • • and thus by our 
estimation concerning rj(Qny S) 

2 2-31 '2 4wR2 

rn>— + ••• 
9 n 

or, supposing the system Qn lies on a part of S with area F, 

2 2-31 '2 F 
U > — + • • • . 

9 n 
I t follows immediately that the upper bound of the radii of circles 

which does not contain any point of a plane system of points with 
density d is 

/ 2 . 31 /2x1 /2 

' * ( - « - ) • 

This inequality is exact; equality holds for a lattice of equilateral 
triangles. 

By the density of a system of points we understand here—pro­
vided that it exists—the limit value d = lim n(F)/F, where n(F) 
means the number of points in the region F of area F and the limit 
refers to the case when F increases beyond all bounds by trans­
formations of similitude. 

Let us consider a system of circles of radius p covering the plane. 
For the system of centres of circles obviously r g p , hence the density 
of any system of congruent circles covering the plane is given by 

2 - 3 ^ 
TP*d^ ( = 1.209- • • ) • 

9 

This result is due to R. Kershner.13 

BUDAPEST, HUNGARY 
12 If the centre of the sphere S lies outside Qn the square root in our equality must 

be taken with negative sign. 
18 R. Kershner, The number of circles covering a set, Amer. J. Math, vol, 61 (1939) 

pp. 665-671. For different generalizations of the above inequality see the second 
paper quoted in footnote 11 and further L. Fejes, Einige Bemerkungen iiber die dich-
teste Lagerung inkongruenter Kreise, Comment. Math. Helv. vol. 17 (1944-1945) 
pp. 256-261. 


