
ANALYTIC CONTINUATION AND INFINITELY 
DIFFERENTIABLE FUNCTIONS 

S. MANDELBROJT 

It is our purpose to show that several branches of the theory of 
functions: detection of singularities, study of the behaviour of an 
analytic function in a strip or in an angle, a much more general the­
ory than that of quasi-analyticity, convergence theorems, and so on, 
can all be based on a single principle, which may be regarded, in some 
ways, as a basic generalization of Cauchy's inequalities on Taylor 
coefficients. 

This principle gives estimates of the dn's in the series ^2dne~~*n* by 
means of the maximum of the modulus of the function F(s) it "repre­
sents." But the novelty of these evaluations lies in two essential facts: 
(1) It is supposed that the series represents the function in a certain 
horizontal strip-like region containing points with arbitrarily large 
abscissae, the series being, however, not supposed a priori to con­
verge to the function anywhere. It has merely to "represent" the 
function with a certain "great precision," or, what amounts to the 
same thing, with a small error. (2) The evaluation is made by means 
of the maximum of the function in a circle which may lie as far to the 
left of the original region as the analytical continuation permits. The 
magnitude of the radius of this circle depends only on the distribu­
tion of the Xn. The radius may be small if the Xn are sparse. 

We have given some results of the same nature in papers pub­
lished a few years ago, but our latest results—the general inequality 
and its applications to infinitely differentiable functions—seem to be 
of the "best possible" kind, since "nearly" converse theorems are 
also proved. At any rate, they are much more general than those we 
published in 1944. 

Before we try to state the results clearly it is necessary to introduce 
some definitions. 

Let {Xn} be an increasing sequence of positive numbers. We intro­
duce the function N(k) = XX^*» which is the number of Xn smaller 
than X, the function DÇK) =iV(\)/X—the density function, and 
D'ÇK) = l.u.b.x%\D(x)—the upper density function. The upper density 
function is obviously the smallest decreasing function larger than the 
density function. 
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The quantity D* =lim supx=<J9(X) =limx-<»JP#(X) is called the upper 
density of {Xn}. We shall suppose that D' < oo. 

It will be convenient to introduce also the mean density function: 
25(X) ~\~lfoD(x)dx, the mean upper density function 35*(X) 
= l.u.b.^\P(x), and the mean upper density of {Xn}: 25#=lim sup 
DÇK) =lim Z5#(X). The inequality 25* £D' always holds, but examples 
show that the inequality 25* <D* may actually hold. 

Let A be a region in the s~<r+it plane containing points with <r 
positive and arbitrarily large. Let F(s) be a function holomorphic in 
A, and let {dn} be a sequence of real or complex numbers. We shall 
write Rm(s) = F(s) — ]T}rd&6~"x**. If n is a given positive integer we say 
that F(s) is represented in A by the set of Dirichlet polynomials 
]CWfeg~x**» with m^Uy with logarithmic precision p(<x), if for $ be­
longing to A, and x sufficiently large the inequality holds: 

g.Lb. (l.u.b. | Rm(s) | ) ^ <r*<*>. 

We shall always suppose that the logarithmic precision is a con­
tinuous function increasing to + °° (or eventually identically equal to 
+ oo for <r large). 

If x is sufficiently large, the difference between ]Cï^~"x** a n d 
F(s) can be made, in absolute value, smaller, in the part of A in which 
a*zx, than any quantity ô>e~p(*\ provided m (larger than n) is 
suitably chosen. 

If the series converges to the function, the logarithmic precision 
can be taken equal to + oo for each n>0. 

The converse is not generally true. But, if the logarithmic precision 
is equal to + oo (for a large) the series overconverges to F(s) in A. 

A channel of width 2R is the union of circles C(s', R) (| s—s'\ <R), 
the radius R being fixed, the centers s' taking all the values on a 
Jordan arc. The Jordan arc itself is the central line of the channel. 

If a function F(s) is holomorphic in the region composed of two 
regions Ai and A2, and a channel C such that one of the circles of C 
lies in Ai, another in A2, we say that F(s) can be continued analytically 
from Ai to A2 through the channel C. 

The idea of the fundamental theorem is the following one: 
If the sums ^2?dke~~Uê (m^n) represent F(s), in a region sufficiently 

expansive (when measured vertically, for <r large), with a sufficiently 
great logarithmic precision, and if the function can be continued 
analytically through a channel sufficiently wide to a circle C(SQ, r), 
then \dn\ is smaller than a certain quantity which depends on the 
following elements: (1) the abscissa of So, (2) the radius r, (3) the 
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maximum of \F(s)\ in C($o, r), (4) the sequence {Xn} by means of 
the quantity 

tnfén I A n A m J 

Let us now state the theorem rigorously: 

FUNDAMENTAL THEOREM. Let {Xn} be a positive increasing sequence 
with upper density D* < oo. Let A be a region in the s — cr+it plane de-
fined by:cr>a, \t\ <wg(<r) where g(a) is a function of bounded variation 
{in [a, oo)), such that g(<r)>D\ lim g{a)>D\ 

Let F(s) be holomorphic in A, and suppose that F(s) can be con-
tinued analytically through a channel wider than 2TTD% to a circle 
C(s0, wR) (R>D*). 

Suppose that the sequence {d*} is such that, for a given integer n>09 

the Dirichlet polynomials X)™ "̂"*** with w ^ « represent F(s) in A 
with a logarithmic precision p(<r) satisfying the relationship: 

(P) f p(<r) exp | - 2-1 ƒ (g(u) - V'ipiu^duAdo- - oo. 

Then 

(I) | <Z» | £ A(R)AnM(s0, R) exp M(*o)] 

where A(R) depends only on i?,1 and where M(so, ^ « m a x \F(s)\ 
(5GC(5o, TTR)). 

In this theorem one may replace Dm by 25* and D'(\) by JD#(X). If 
the sequence {Xn} is such that 25# < D \ then with these replacements 
the hypotheses become less restrictive. 

The condition (P) seems to be the most involved but as matter of 
fact, from a certain point of view it is, if not the best possible condi­
tion, at least an "almost best possible" one. We shall see the meaning 
of this assertion later on. But from now on we may notice that the 
theorem ceases to be true if, in (P), D'(p(cr)) is replaced by its limit 
D' (such a condition would be less restrictive than (P)). 

If the series ]C^e~x** converges to F(s) for a sufficiently large, 
then p(a) as oo (for <r large) and the relationship (P) is satisfied auto­
matically. In this case g(cr) can be taken as large as possible, and the 
theorem is then reduced to the following statement: 

If X^̂ e~x*% with D* < oo, converges for <r large to a function F{s) 
which can be continued analytically, through a channel wider than 2TTD\ 

For a given sequence {Xn}. 
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to a circle C(so, TR) (R>D*), then the evaluation (I) holds f or each 
n^l. 

Let us, for a moment, limit ourselves to the case in which the series 
converges to the function for large values of a (<T><TC). I t follows then 
from the theorem that if F(s) can be continued analytically from the 
half-plane of convergence, through channels wider than 2wD\ to 
circles C(si, TR) with limi-oo9t(^) = -"- °°> F(s) being bounded in the 
set of these circles, then F(s) is identically zero. 

If, for instance, F(s) is holomorphic and bounded in a strip \ t\ <wC 
with C>D\ then F(s) is identically zero. 

On introducing, moreover, the theory of normal families, we get 
the following result: 

If the series ^d+er**9 with D' < <*> converges, for <r large, to a func­
tion F(s) non-identically zero, then in each strip A : | / | <7 rC , with 
OD', F(s) satisfies one of the three conditions: 

(a) F(s) admits there at least one singularity, 
(b) F(s) tends to infinity as lim a =*= — oo uniformly with respect to t, 

s belonging to the strip \t\ <7r(C — e), with € arbitrarily such that 
0<e<C. 

(c) F(s) takes in A each value, except at most one, infinitely many 
times. 

Many years ago, Rit t defined the order of a function given by a 
Dirichlet series convergent everywhere by: 

log2 M (a) 
PR = lim sup 

o-»—oo — cr 

where 

M(<r) = l.u.b. | F(<r + it) | . 
— oo<J<eo 

F(s) being an integral function, let us set 

Ma(a) « l.u.b. | F(er + it) | , 
|||<*C 

,^x ,. log2Mc(<r) 
PR(C) = lim sup 

O-as — 00 — 0" 

We shall call pn the order (i?) of F(s) in the plane, and PR(C) the order 
(R) in the strip |*| <irC. 

If lim inf (Xn+i—Xw) = &>0, then it is proved that 

log An 
lim sup ^ A (h, D*), 

n«» X» 
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where A (h, D#) is a quantity tending to zero, when h is constant, D* 
tending to zero. 

I t is then easy to see from our general inequalities that if O 25% 
h>0, then PB(C)=PR. 

In other words: the order (R) of a function given by a Dirichlet series 
convergent everywhere is, in each horizontal strip larger than 2wD\ 
equal to its order (R) in the whole plane. 

This, together with a theorem proved by Bieberbach and Valiron 
(concerning the growth of functions in an angle), allows us to prove 
tha t if D* < oo, h>0, and if ^2dke~~Ua represents an integral f unction 
F(s) which is not a Dirichlet polynomial, then in each strip wider than 
2ir max (D\ (2P)"1) there exists a straight line t = to such that in each 
horizontal strip containing this line F(s) takes each possible value, ex­
cept at most one, infinitely many times. 

With Xw integers and p = oo, this result contains a theorem of Pólya. 
The line arg z = Jo is then a "line of Julia" of the function ^dj^h. 

In a more restrictive form, these particular results concerning con­
vergent Dirichlet series were already obtained by Gergen and myself 
many years ago. 

On supposing still tha t the series admits an axis of convergence, 
let us see how the fundamental theorem gives results on singularities 
of functions represented by Dirichlet series. I t follows from the gen­
eral inequalities that if ac is the abscissa of convergence of the series 
then 

log | dn | log Aw 
ac = lim sup g lim sup h 9?($o). 

n=oo X n n = » Xw 

In other words, if h>0, and if F(s) can be continued analytically 
through a channel wider than 2ifD* to a circle | s —$o| <7ri? (R>D*), 
then 

SR(*o) è ac-A(h,D'). 

This leads immediately to a theorem of Ostrowski by which : 
For each h>0 there exists a function Bh(D*), with l im^-o^a (D') = 0, 

such that in each circle with center at <x = <xc and radius Bh(D') the func­
tion F(s) admits a singularity. 

If, in particular, D' = 0, we must have 9?(so) ^Cc, the width of the 
channel being arbitrarily small. This shows that if lim #/Xn = 0 (h>0), 
then each point on a = ac is a singular point. For Taylor series (Xn 

integers) this is the famous Fabry's "gap theorem." For Dirichlet 
series it was proved by Szâsz. Other theorems on singularities can 
be obtained. 
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Of course, the theorems on bounded functions in a strip or in a set 
of circles (theorems of Liouville's type), theorems of Weierstrass 
and Picard's type, still hold, if, instead of supposing that the series 
converges, we suppose merely that it represents the function in a 
region A (as in the fundamental theorem) with a sufficiently large 
logarithmic precision (the condition (P) to be satisfied). 

It may seem unnecessary to generalize results on convergent series 
to asymptotic ones. But we shall now show that our general theorem, 
in which it is not supposed that the series converges (instead, the 
condition (P) is satisfied), gives results on infinitely differentiable 
functions, results which can be obtained only because the series is not 
supposed a priori to converge. 

The link between the fundamental theorem and the theory of in­
finitely differentiable functions is given by a lemma which we shall 
state next. We must, however, first introduce a notion connected 
with infinitely differentiable functions. 

If f(x) is an infinitely differentiable function on the interval I 
(#^0), such that l.u.b.*fco|/(n)0*0 I —mn< <*>, we shall call the function 
Cj{<r) = l.u.b.»fci(w—log mn) the character of the function ƒ(#). 

We prove the following lemma: 

Letf(x) be an infinitely differentiable f unction in I (#e0) such that 
|/(w)0*0| ^Mn<°°(w^0). Let {vn} be a sequence of non-negative in­
tegers such that 

ƒ<*>(()) = 0 (» £ 1). 

Let {qn} be the sequence of non-negative integers complementary to 
M-

For each real a the function 

Fa(s) = I exp [- xe8~a]f(x)dx 
J o 

is holomorphic in the region A defined by e9 cos / è l . In this region the 
inequality holds: \ Fa(s)\ <Moea; and for eachn*zl> Fa(s) is represented 
in A by J%d]per*» with m^nt where d ^ - e ^ ^ O ) , A* = g*+1, with 
the logarithmic precision equal to Cf(<r—a) —a, where C/(a) is the char­
acter off(x). 

It is clear that this lemma together with our fundamental theorem 
allows us to evaluate the derivatives of infinitely differentiable func­
tions at the origin, if sufficiently many of these derivatives are sup­
posed a priori to be zero (at the origin), and if the character of the 
function is sufficiently large. As a matter of fact, the evaluations so 
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obtained depend on the quantity a in such a way that they enable 
us to prove, by making a tend to infinity, that all the derivatives are 
zero at the origin (if many of them are supposed to be zero, and if the 
character is large). 

Here is the principal theorem concerning infinitely differentiable 
functions, obtained on combining the fundamental theorem with the 
lemma. 

Let f(x) be an infinitely differentiable function on I (# èO), bounded 
with all its derivatives on I. Let {vn} be a sequence of non-negative in­
tegers with vi = 0, such that the upper density D* of its complementary 
sequence {qn\ satisfies the inequality D*<l/2. Let C/(<r) denote the 
character offix), and let D*(q) be the upper density f unction of {qn}< If 

(Q) ƒ CM exp f - f (1 - 2D-(Cf(u)))-Hu ]d<r = 

and iffM(0) = 0 (&èl), then f (x) is identically zero. 

Of course, in this theorem, too, D* and D'(q) can be respectively 
replaced by 25* and 25* (ö) (the mean upper density and the mean 
upper density function of {^n}). 

It is obvious that this theorem contains, as a very particular case, 
the classical theorem on quasi-analyticity. If, indeed, we suppose that 
all the derivatives are zero at the origin, that is to say, that the se­
quence {*>,»} is composed of all the non-negative integers, then 
D'(q) s=0, and the theorem becomes: 

if 

ƒ<»>(()) - 0 (n è 0), | ƒ<»>(*) \g Mn< °o (n à 0, x è 0) 

and if 

ƒ Cf(o)e~9d<r = oo, 

thenf(x)&0. 

In particular if/<»>(0)=0, |/(w)(x)| £Mn (w^0), and if, on setting 

A(o) = l.u.b. (na — log Mn), 

we have: 

(Q') f A(a)e-"d<r - oo, 
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then ƒ(x) s=0. This is exactly another wording of the classical theorem 
(Denjoy-Carleman) on quasi-analyticity (Ostrowski's form). 

However, not only does our theorem require merely D* < l / 2 in 
order to enable us to affirm that ƒ(#)=(), if a suitable condition on 
Cf(<r) is satisfied (condition (Q)), but, moreover, even if the classical 
condition is satisfied (condition (Q0) we do not need to suppose that 
all the derivatives are zero at the origin in order to conclude that 
ƒ(*)»<). 

For instance, the functions ƒ such that 

| f^(x) | < Kn(n log n)n (n ^ 2) 

constitute a quasi-analytic class. By the classical theorem one can 
affirm that ƒ (x) ==0 only if it is supposed that / ( n )(0) = 0 (n^O). But, 
since Cf(a)>Ceff/a we see, by our theorem, that if we suppose 
jf("»)(0)=0 (n^l, Pi = 0), the complementary sequence {qn} being 
such that qn>an log n log2 n, we still may conclude that ƒ(x) = 0 . 

That the theorem on generalized quasi-analyticity cannot be much 
improved is shown by the following example: If in the just quoted 
example we replace the inequality qn>an log n log2 n by qn>an log n 
then the assertion that ƒ (x) = 0 is not any more true. 

As a matter of fact, the following theorem can be proved: 

If the sequence of positive integers {qn} complementary to the sequence 
of non-negative integers {vn\ (vi = 0) is such that lim log qn/n~0, then 
there exists a function f (x) not identically zero on I (x^O), infinitely 
differentiable and bounded on I such thatfiVn)(0) = 0 and such that 

| / ( n ) ( * ) | £qiq%--qn (» è 1, * â 0). 

The proof of the fundamental theorem is difficult and technical and 
it would be impossible to indicate here even its main outlines. But 
it may be interesting to mention a theorem which plays an important 
role in the proof of the most general case. 

The theorem generalizes a classical one which solves the Watson 
problem in a half-plane. As a matter of fact, this classical theorem 
served us as a tool when our statement of the fundamental theorem 
was less general. 

Let #(5) be holomorphic in a region A given by <r>a, \t\ <G(<r), 
where G(a) is a function of bounded variation with lim G(a) > 0 , and let 
$(s) be continuous and bounded in A. Let N(cr) be an increasing func­
tion. 

if 
(a) log I $(<r + *?(«•)) I < - N(<r), 
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and if on setting, for d>a, 

du 

2Jd G(u) 

we have 

03) f N(a)e-S^da = oo, 

then the function <£(5) is identically zero. 

This theorem has its converse. 

If, N(cr) being an increasing function, (/3) does not hold, then there 
exists a function $(5), not identically zero, holomorphic and bounded in 
A and such that (a) holds. 

These two theorems were proved in a paper by G. R. MacLane and 
myself. If G(o)^ir/2, a = — 00, the theorem gives the classical solu­
tion of a classical problem (generally stated for a half-plane z = e*). 

Let us mention that very recently we have proved jointly with 
Norbert Wiener results concerning infinitely differentiable functions 
of a character similar, if not easily comparable, to the theorem on the 
same subject stated above. The methods we used with Wiener are 
quite different from those I used to prove the theorem mentioned 
here. We employ an auxiliary function, holomorphic in the half-plane, 
with an argument corresponding to an order of differentiation, real or 
complex, with non-negative real part, and a value given by the value 
of the derivative of that order a t the origin of a given infinitely dif­
ferentiable function. 

Let us notice that the fundamental theorem gives also conditions 
for convergence of Dirichlet series. 

Suppose tha t F(s) is holomorphic in a region described in the 
statement of the fundamental theorem, and let in this region 

(C) Hs) - Y,dk(r^< g ¥„rx«'. 

I t is then readily seen tha t for each integer n, X^*6""***» w r t h 
m^n, represents F(s) in A with the logarithmic precision equal to : 

(M) p(<r) = l.u.b. (Xncr - log Mn). 

Therefore, if, with the notations just introduced, (P) holds, then 
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(I) holds for each n>0. It can then be easily shown that if (C) and 
(P) hold (with p(<r) defined by (M)), and if A>0, then ]£<4e~x** con­
verges to F(s) for <r sufficiently large. 
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