
A PROOF OF TWO FUNDAMENTAL THEOREMS ON LINEAR 
TRANSFORMATIONS IN HILBERT SPACE, WITHOUT 

USE OF THE AXIOM OF CHOICE 

I . BARSOTTI 

The definitions and notations used in this paper may be found in 
the volume Linear transformations in Hubert space by M. H. Stone,1 

which work I shall quote as S. 
Many of the consequences of S, chaps. 4-9, are based on the exist­

ence of transformations of a particular kind called projections (S, 
Definition 2.16), and such existence is a consequence of S, Theorem 
1.23, whose proof is based on S, Theorem 1.18. The last one is a par­
ticular case of a Hausdorff theorem2 on abstract spaces, and its 
proof depends upon the axiom of choice. I shall show, without use 
of that axiom, that "every closed linear manifold 3ft in the Hubert 
space § has an orthogonal complement ^yQSft." The consistency 
of S, Definition 2.16 will thus be ensured. 

Another theorem based on the axiom of choice is S, Theorem 2.25. 
This one I shall prove as well without the aid of the axiom. 

It is necessary to make clear the meaning of the word "closed" ap­
plied to a subset 9ft of the Hubert space § . 

Let ƒ be a point of § .ƒ is said to be a point of accumulation of 9ft 
if for every real number e > 0 there exists a point g?£f of 9ft such that 
| g—f\ <€.9ft is said to be closed when every point of accumulation of 
9ft is a >oint of 9ft. 

An alternative definition is the following: ƒ is a point of accumu­
lation of 9ft if there exists an infinite sequence {gi} of points of 9JÏ 
such that giT^f (i = l, 2, • • • ), liming* =ƒ; 9ft is said to be closed 
when every point of accumulation of 9ft is a point of 9ft. 

I t is well known that , if the axiom of choice is accepted, these two 
definitions are equivalent; if not, a subset 9ft closed according to 
the first definition is also closed according to the second one, but 
the converse is not necessarily true. Therefore, we shall assume the 
first meaning of the word "closed" to be the correct one. 

In the logical development of the theory, Theorems 1.3 to 
1.14 of S can be stated and proved: it must be remarked that in the 
proof of S, Theorem 1.13, a well determined orthonormal set {<j>n} 
is found. Therefore, when a sequence {fn} is given, it is possible to 
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2 Hausdorff, Grundzüge der Mengenlehre, Theorem VIII, p. 273. 
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choose, among the generally infinitely many orthonormal sets which 
determine the same linear manifold and the same closed linear 
manifold as {fn}, a particular one, which will be called the ortho-
normal set attached to {/n}. Let S0Î now be a closed linear manifold 
in § , © a relatively open subset of 9JÎ, in brief an O-set in SDÎ, that is, 
such that for every ƒ of © there exists a real e > 0 such that if g is in 
SDÎ and |g—•ƒ) ^€, then g belongs to ©. The set consisting of the 
points of © and of its points of accumulation is the closure of an O-set 
of 9Ji, in brief a C-set in 9ft, and is still a subset of SÛÎ. 

The sphere with center © and radius r > 0 is the set consisting of 
the points g of § such that | g—ƒ | <r for every ƒ of ©, whenever such 
set is not empty. The same definition holds when © is a C-set in 9K; 
the set consisting of the points of sphere and of its points of accumula­
tion will be named a closed sphere. 

Recalling the definition of diameter of a set in a metric space,8 it is 
easy to prove the following lemma. 

(1) LEMMA. Let © be an O-set or a C-set in the closed linear manifold 
50Î. Then a necessary and sufficient condition that a closed sphere of 
center © and radius r exist is that r^d, where d is the diameter of ©; 
and if d\ is the diameter of the sphere, then d^di^Llr. A sphere 
(a closed sphere) is an O-set (a C-set) in $ . 

(2) LEMMA. Let {©m} be a sequence of C-sets in a closed linear 
manifold SDÎ, such that @m+iC©m (w = l, 2, • • • ). If dm>0 is the 
diameter of ©m and limm.*«>dm = 0, then there exists one (and not more 
than one) point belonging to every ©m.4 

PROOF. Let © ^ be the closed sphere with centre ©w and radius dm 

(1), and ©<? the intersection of ©?>, ©£\ • • • , ©£>. Then © ^ is 
a non-empty C-set in § , since ©»£©£>, and the relation © ^ i C © £ } 

is satisfied for m = l, 2, • • 
Let {fm} be a denumerably infinite set of points dense in § (whose 

existence is asserted by S, Postulate D, p. 3) fixed once for all. If 
{/mM is the sequence of the elements of {fm} belonging to ©P , 
{ffi \ is surely not empty, and may be easily shown to be dense in 
© ^ = ©i2). 

The sequence {ffi} formed with the elements of {fm} belonging to 
©£2) is also not empty, is dense in ©£2), and is a sub-sequence of {f$} ; 

8 Kuratowski, Topologie, vol. 1, Warsaw, 1933, chap. 15, III, p. 85. 
4 This is a particular case of a theorem stated by Saks (Theory of the integral, 1937, 

chap. 2, Theorem 9.1, p. 54) for more general spaces, with the aid of the axiom of 
choice. 
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and the same properties are valid for the sequence {ffi} chosen with 
respect to @£2) (w = l , 2, • • • ). Let /m(n> be the first element, in the 
ordering of {fm}, which belongs to {fjp}. If e > 0 is given, there exists 
an integer M such that dM<e/2, and if ni, n*>M, it follows tha t 

I ƒ•»(»»!) — fm(fi2) I =3 2dM < €. 

Therefore, for S, Postulate E, p. 3, there exists an ƒ such that 
lining fmin) =ƒ. Since, for n>M> /m ( n ) belongs to © $ , and © $ is 
closed, ƒ belongs to © $ as well, and then it belongs to every ©|£\ 

When g is an arbitrarily chosen element of ©j/, we have 

U - / I S 2dM<e, 
and therefore ƒ is a point of accumulation of S0Î according to our 
definition. 2)? being closed, we conclude that ƒ belongs to SDÎ, and con­
sequently to every ©m. The uniqueness of/ is easily proved, Q.E.D. 

(3) THEOREM. Let 5DÎ be a closed linear manifold, ƒ a point of ^). 
Then there exists a {unique) point go of SDÎ such that |/—go| < | / - - g | for 
every g s* go of W. 

PROOF. When ƒ belongs to 9JÏ, it is go=f. Otherwise, let d>0 be 
the lower bound of the values of |/—g\ when g ranges over SDt, and 
let © ^ be the (non-empty) set consisting of the elements g of 3ÏÏ such 
that d£\g-f\ <d+l/m (w = l, 2, • • • ). When gi belongs to ©£> 
and g2 to SDÎ, it follows from |gi--g2| <e that 

| f t - / | â | f t - f t | + | f t - / | < | « i - / | + « , 

so that if we choose e<d+l/ni--\gi—f\, the relation |g2—ƒ) 
<d+l/m holds, showing that ©j£} is a 0-set in 9)Î. Therefore the 
set ©m consisting of the points g of SDÎ for which the relation 

rfg|g-/| ^ J + l / m ( m « 1, 2, . . . ) 

holds, is a C-set in S0Î, and we have, of course, ©m+iC©m (m = l, 
2, • • • ). Let now gi, g2 be distinct elements of ©w. We have:6 | gz—f\2 

= U x - / | 2 + | ^ ~ g i | 2 + 2 8 l [ ( g i ~ - / ) X ( g 2 ~ g i ) ] ^ ( d + l / m ) 2 , where 9t[*] 
is the real part of #, and also — |gi—jf|2^ — d2. This inequality, 
added to the former one, gives |g2--gi | 2+29l[(gi-f)X(g2-gi)] 
£(l/m)(2d+l/m). From this, if SR [(&-ƒ) X ( g î - g i ) ] è O , it follows 
that \gt-gi\g((l/m)(2d+l/tn)yi*. If M[(gi-f)X(g2-gi)]<0 but 
$ft[(g2—/)X(gi —g2)]^0, we may reach the same result by inter­
changing gi and g2. 

6 1 am using ƒ Xg instead of (ƒ, g). 
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Let now «R[ (g i - / )X(g 2 -g i ) ]<0 and 8 t [ ( f t - / ) X ( g i - f t ) ] < 0 , and 
put gs = gi+a(gi—gi), where 

- « [ ( f t - / ) X ( f t - f t ) ] 
U < a = j ; • 

We may also put 

n ^ p - « [ ( g t " / ) X ( g i - g « ) ] 
0 < / 3 = j r > 

1 * 1 - #2 I2 

and so ce+/3 = l, g3 = g2+|3(gi~~g2). From the comparison of these 
two expressions obtained for g3, we are enabled to say that every 
equality or inequality involving a, /3, gh g2i gz will still remain true 
after having interchanged a with j8, g\ with gz. Now, we have: 

\g* - /I2 = I gi - / 1 2 + «2I g* - gil2 + 2«9î[(gi - ƒ) X (g, - gi)] 
I . . . , 9 î 2 [ ( g i - / ) X ( g 2 - g i ) ] 

„ SK2[(gl -

1 

| g 2 - g l | 2 

- ƒ) x (g, -

1 g2 ~ gl |2 

- ƒ) x (g. 

"gi)] 

- g l ) ] 
= | g i J\ I u 

I g2 - g l I2 

< *i-/M(<*+iy, 
and therefore g3 belongs to ©m. Moreover: 

m(g*-/)x(gi-g s)] 
= »[ ( f t - ƒ) X (gi - « . ) ] + o5R[(ft - gi) X (gi - ft)] 

= «3î[(gi - ƒ) X (gi - ft)] + «2SR[(g2 - gi) X (gi - *.)] 

= « { - 81 [(ft - ƒ) X (ft - gi)] + 9t[(ft - ƒ) X (ft - gi)]} - 0, 

so that we may apply to g\ and gz the result obtained above. Thus 
I £3 —gi I ^ ((l/m)(2d + l/m))ll2

f and interchanging gi with g2, we have 
|g3 — g2| ^((l/m)(2d+l/m))112. Therefore, under any circumstance, 
\gi-gi\g2Ul/tn)(2d+l/fn))U*. 

We have now shown that the diameter of ©m converges to 0 when 
m—» 00, and that the requirements of Lemma (2) are fulfilled for the 
sequence {©m}. The lemma gives an element g0 belonging to every 
©m, tha t is, such that \go~~f\ ^d+l/m for w = l , 2, • • • . Hence 

file:///go~~
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I go— ƒ| =d. It may easily be shown that |g—/| >d if g9ego, Q.E.D. 

(4) THEOREM. A closed linear manifold is separable. 

PROOF. Let 9JÏ be a closed linear manifold, {fn} a sequence dense in 
§ . For (3) it is possible to find, for each fn, a point $» in M such 
that \f,-$*\ <\fn-g\ for every g?*$> of 2tt. We want to show-
that {go0} is dense in ffl. In fact, for every g in 2ft and «>0, there 
exists an integer n such that \g—fn\ <e /2 . Then |gó")—/»| =\i~f A 
<*/2, \gP-g\ ^Uo";-/»|+| /»-g| <*, Q-E.D. 

When the closed linear manifold SD? is given, and {gdn)} is built 
according to the proof of (4), let {<£n} be the orthonormal set at­
tached to {gon)}- {<f>n} determines the closed linear manifold 2JÎ, and 
will be said to be attached to 3DÎ. 

Now we are able to prove the fundamental theorem: 

(5) THEOREM. Let Wli, 9K2 be closed linear manifolds, and SDÎ1CSDÎ2; 
then the orthogonal complement 9J?3 = SD?209Ki {that is, the set of all the 
elements of 9D?2 which are orthogonal to every element of SDÎi) is anon-
empty closed linear manifold. Furthermore, if f2 is a point of SDÎ2, then 
/ 2 = / i + / 3 , with f 1 in SSfli,fs in SD?3, uniquely determined. 

PROOF. Let {<t>n\ be the orthonormal set attached to 3Ri, and 

1 

according to S, Theorem 1.7,/3=/2—ƒ1 is orthogonal to 2)?i, hence 
an element of 9D?3. The other parts of the proof may be omitted, 
as they are very simple. 

Thus the first aim pointed out in the beginning of this paper is 
reached. We may add, in case WI2 = $ in (5), that ƒ1 is the projection 
of fz=f on 9Jîi, and that the element go of (3) is the projection of 
fonm. 

We now want to prove the following theorem. 

(6) THEOREM. If H is a symmetric transformation whose domain is 
!Q, then H is bounded and therefore continuous. 

PROOF. (I) The proof consists of a deeper development of the one 
given in S, p. 59. Let fi, • • • , fm be arbitrary elements of ^ , $D?i the 
closed linear manifold determined by f\, • • • , fm, Hf\, • • • , Hfm, 
JEP/i, • • , mfm, and 2R2 = #02Ri . If ƒ is an arbitrary element of 
2«2, we havefXfi=fXH?i = HfXfi=fXHyi = HfXHfi = 0 (* = 1,̂  2, 
• • • , m). Let {/£1}} be a sequence dense in § , and gn the projection 
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of /£1} on 9D?2, and let gn(m) be the first element of {gn} satisfying the 
relation l u g n ^ ! ^w|gn(m)| , when such an element exists. Then 
0m+i==gn(m)/|gtt(m)| is normal, and <t>m+i, H<j>m+X are orthogonal to 
fly ' ' * » fm, Hfl, * • * i Hfm* 

(II) If an arbitrary normal e l e m e n t ^ is chosen, let us put w = l, 
/ i = $i in (I), and determine, if possible, an element $2 with the 
method outlined in (I). Then put m = 2 , / i = $ i , ƒ2 =02, and determine 
a 03, and so on, as far as possible. Two cases may occur, which we 
are going to discuss separately. 

Case A: the process may be carried on indefinitely. When this is 
the case, the elements which have been determined form an ortho-
normal set {<t>n} with cardinal number \&0, and such that 

Hfa X H<t>k = 0 if i 5* k, I H<t>k I ^ k. 

If we set 

n I 
fin = 2-f« — 0 « > 

1 a 

the sequence {hn} converges to some h, according to S, Theorem 1.6, 
and we have: 

I Eh |2 = h X H2h = lim (hn X H*h)t 

n 00 J 

fcn X #2A = #2/*„ X * = Z « X^ — #V« X ^ 
1 1 «P 

n 00 1 n 1 

= Z « L * —S<t>a X ff** = Z « — I ^*«| 2 ^ », 
1 1 a& 1 a2 

so that JHh\ 2^n for every w. This is absurd. 
Case B : the process cannot be carried on indefinitely. If this is 

the case, there exists an orthonormal set 4>u ' ' ' » <t>m which deter­
mines a closed linear manifold Sfti such that , if SD?2 = ^OSDîi, the 
projections g^ (n = l , 2, • • • ) of the e l e m e n t s / ^ on 9tt2 satisfy the 
limitations \Hgi%) \<m\f$)\. If ƒ is an arbitrary element of 9Ki, we 
have 

I Hf I2 = Z«.* *«^W« X H0/3 é PE«,^ I *« I I ** I 
1 1 

1 m fît -f- l 

^vp2:«^(i*«!2+i^i2)=-^—^i/i2. 
Z 1 Z 
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where P is a suitable positive number. If gn
x) is the projection of f$* 

on SDÎi, we have 

.(1) (1) , (2) | .(1)12 | (l)i 2 | (2) 12 
ƒ« = gn + gn , I ƒ» I = \gn \ + \ gn | , 
( D i . I , < D | I ( 2 ) . I ( 1 ) , 

and 

I Hfn Xfn J = 2^«^ #£n X gn \û L,a,^ \ Hgn X gn \ 
I l 1 1 

2 2 

^ 2 « , 0 | #£n" | |gn | Û £ « , 0 # « \ gn \ \ gn \ 
1 1 

s4(Si + *0Ê. , ( | *H , + |«.w|') 
^ l 

where 2Ti«((i» + l)/2)P, X2 = w. If we set 3(Xi+Z2) /2=X, the last 
inequality may be written HfjPxfPl £K\fP\*. 

If we repeat the process replacing if with H2, and introducing a 
new constant Q2, we obtain: 

| f fY . w x /HH*^x2 t f w | sG* l / ^ 
Ifl/^I^Ql/^l (Q>0). 

Now let ƒ be an arbitrary element of § . We have \ffiXHf\ 
= \HfUxf\s\HfU\ l/l rgQl/^l | / | , and if g is another arbitrary 
element, and e >0, there exists an integers such that |g—/^j <€. It 
follows that 

I g X Hf\ g | ƒ? ' X fl/| + | (g - f?) X fl/| 

éçi/ni/i+u-niH/i 
<el/.1 ,ll/l + «|H/l 
^QUII / l+Cl /^- i l l / l+ ' I f l / l 
<Q|«II/I+«(Q|/I+|H/I). 

and thus that I g XHf I £Q\g\ | ƒ |. With this result, and by S, Theorems 
2.21, 2.22, the proof is completed, Q.E.D. 
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