
PRIMITIVE RECURSIVE FUNCTIONS 

RAPHAEL M. ROBINSON 

1. Definition of recursive functions. In this paper, we shall con­
sider certain reductions in the recursion scheme for defining primi­
tive recursive functions. Hereafter, we shall refer to such functions 
simply as recursive functions.1 In §1, we define what is meant by a 
recursive function, and also define some recursive functions which 
will be used. The statement of the principal results of the paper will 
be found in §2. 

By a number, we shall mean one of the natural numbers 0, 1, 
2, 3, • • • . We shall consider functions of any number of variables, 
each variable ranging over all numbers, and the values of the function 
being numbers. Small letters will denote variables assuming numeri­
cal values, and capital letters will denote functions. In the case of a 
function of one variable, we shall usually write Fx instead of F(x). 

A function will be called recursive if it can be obtained from certain 
initial functions by repeated substitution and recursion. 

The initial functions are the following: 
The identity functions ; that is, for every n and k with 1 ̂ k gw, the 

function Ink defined by 

The zero functions; that is, for every w^O, the function On de­
fined by 

On(xh • • • , Xn) = 0. 

The successor function; that is, the function 5 of one variable, 
such that Sx is the next number after x. 

The substitution rule is the following: If Ai, • • • , Am are known 
functions of n variables, and B is a known function of m variables, 

Presented to the Society, August 22, 1946; received by the editors March 5, 1947. 
1 Various types of recursive functions play a fundamental role in mathematical 

logic. Primitive recursive functions were used by K. Gödel, Über formal unentscheid-
bare Sâtze der Principia Mathematica und verwandter Système I, Monatshefte für 
Mathematik und Physik vol. 38 (1931) pp. 173-198; for the definition, see pp. 179-
180. For a discussion of general recursive functÎDns (which may be considered to be the 
computable functions), see S. C. Kleene, General recursive functions of natural num­
bers, Math. Ann. vol. 112 (1936) pp. 727-742. For some other types of recursion, see 
the paper by R. Péter cited in footnote 2. In the present paper, we consider only the 
simplest type of recursive function, the primitive recursive function, and no knowl­
edge of other papers is assumed. 
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then a function F of n variables may be defined by 

F(xh • • • , xn) = B{Ai{xh • • , xn), • • • , Am(xi, • • • , tfn)). 

It is not excluded that m or n should be zero. 
In particular, we can obtain by substitution the functions 

o(Jn\Xij ' ' ' , Xn), Oo(Jn\Xi, ' ' * , Xn), * • • , 

that is, all constant functions. Also, if we put 0m for B, and any 
functions of n variables for Ai, • • • , Am, then F is the function 0W. 
Thus it was not necessary to assume all the zero functions as initial 
functions; we could in fact have taken just OQ, 

Furthermore, using the identity functions, any desired permuta­
tion of variables, or introduction of extra variables, may be accom­
plished. For example, given a function B of two variables, suppose it 
is required to define a function F of three variables, such that 

F(x, y, z) = B(z, x). 

This is seen to be included in our substitution rule when written in 
the form 

F(x, y, z) = B(IM(X, y, z), J3i(#, y, «)). 

Finally, we must tell what is meant by recursion. If A is a known 
function of v variables, and B a known function of n + 2 variables, 
then a function F of n+1 variables may be defined by the recursion 
scheme 

F(uh • • • , Un, 0) = A(uh • • • , Un)f 

F(uh • • • , Un, Sx) = B(uh • • • tUn, x, F(uh • • • , un, x)). 

The recursion is said to be with respect to x; the other variables 
«l, • • • , «n are called parameters. In case w = 0, we may replace 
A(ui, • • • , un) by a number a. This completes the definition of 
what is meant by a recursive function. 

Familiar examples of recursive definitions with one parameter are 
those of u+x, ux, and ux, which must be made in this order. The 
definitions are: 

u-\-x: u-\-0 = Uj u+Sx—S(u+x); that is, Au~u, B(u, x, y)=Sy. 

ux: ^-0 = 0, u-Sx=ux+u; that is, Au = 0, B(u> x, y)~y-\-u. 

ux: u°=ly uSx=u*'U; that is, Au=l, B(u, x, y)~yu. 

We shall make much use of the function 0*, and also of sgn x = 0°*. 
We shall also use predecessor and difference, defined by 
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Px: PO = 0, PSx = x] 

u — x: u ~ 0 = u, u -*- Sx = P(w — x). 

Notice that u—x — 0 if u<x. We also use the absolute difference 

| u — x | = (w — x) + (x -*- u). 

The notation w—#, without dot or vertical bars, will always be used 
in an ambiguous sense, to stand for any recursive function F(u, x) 
which is equal to u — x for u^xt regardless of its value when u<x. 
Any such function will be called a difference function. In particular, 
u — x and \u—x\ are difference functions. 

The functions Dx and Txy giving the remainders when x is divided 
by 2 or by 3, are defined by 

Dx: DO = 0, DSx = OP'; 

Tx: TO = 0, TSx = 0T* + 2-()lr*-1l. 

We may also describe D as the characteristic function of odd num­
bers. Two further recursive definitions are 

Fx » [x/2]: F0 = 0, FSx = Fx + Dx; 

Fx = [x1'*]: F0 = 0, FSx = Fx + 0<SF*>2-S*. 

In the last definition, FSx is obtained from Fx by adding 1 when the 
next square after x is the next number after x, but adding 0 when 
the next square is larger than the next number. We may now obtain 
by substitution the excess over a square, and the characteristic func­
tion of squares : 

Ex = x - [xlf2]2, Qx = 0Ex. 

All of the symbols defined in this section will be used with the same 
meaning throughout the paper. The letters / , K, L will have a special 
meaning defined in §§3 and 4. On the other hand, the symbols A, B, 
F will be reserved for general functions, and may have a different 
meaning each time they are used. 

2. Statement of principal results. We shall consider certain more 
special recursion schemes than the one which occurs in the definition 
of recursive functions. One restriction is to limit the number of 
parameters. Another restriction is to suppose that B does not depend 
on all of its variables. If 5(«i , • • • , # , > , # , y) does not depend on the 
parameters #i, «2 • • • , w«, we shall call the recursion scheme itera­
tion. (If w = 0, this is no restriction.) If B(u\t • • • y) does not 
depend on x, we shall speak of pure recursion, and if it depends only on 
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y, of pure iteration. Thus with one parameter, we have the four recur­
sion schemes : 

Recursion: F(u, 0) = Au, F(u, Sx) = B(u, x,F{u, x)). 

Pure Recursion: F(u, 0) = Au, F{u, Sx) = B{u, F(u, x)). 

Iteration: F{u, 0) = Au, F(u, Sx) = B{x, F(u, x)). 

Pure Iteration: F(u, 0) = Au, F(u, Sx) = BF(u, x). 

It should be noticed, here and below, that the more special schemes 
are always actually included in the more general ones, since (by using 
the identity functions) a function of certain variables may always be 
considered as a function of more variables. 

The last two schemes are no less general, if taken in the form: 

Iteration: F(u, 0) = u, F(u, Sx) = B(x,F(u, x)). 

Pure Iteration: F(u, 0) = u, F{u, Sx) = BF{u, x). 

For it is easily seen that if F(u, x) is defined in this way, then the 
previously defined function is simply F(Au, x). 

The function F(u, x) obtained by the last scheme (pure iteration) 
is simply the result of applying the function B x times to u. Hence 
we write 

F(u, x) = B*u. 

For example, u+x = Sxu. 
With no parameter, we have but two recursion schemes, since 

there is no distinction between recursion and iteration. These are: 

Recursion: JPO = a, FSx = B(x, Fx). 

Pure Recursion: F0 = a, FSx = BFx. 

Since w = 0, the function A(ui, • • • , un) is replaced by the number a. 
The pure recursion scheme defines the function Fx = Bxa. Unlike 
Bxu above, this is a function of the one variable x, since a is a given 
number. 

We also consider the somewhat more special schemes where only 
the value 0 is allowed for a : 

Recursion: F0 = 0, FSx = B(x, Fx). 

Pure Recursion: F0 = 0, FSx = BFx. 

Even the last and most special recursion scheme, Fx = Bx0, will be 
seen to be adequate to define all recursive functions, if two func­
tions are adjoined to the initial functions. 
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For each degree of specialization of the recursion scheme, we shall 
ask what recursive functions need to be adjoined to the initial func­
tions, in order that all recursive functions can be denned. It is under­
stood that we always keep the identity, zero, and successor func­
tions as initial functions, and that the substitution rule is unchanged. 
It will be shown that the functions given in the following table are 
sufficient to adjoin to the initial functions. 

Mixed 

Pure 

One Parameter 

Recursion 

— 

P 

Iteration 

— 

Q 

No Parameter 

u+x, Q; or |w—#| 

u+x, E; or \u—x\, Q 

In the table, the word mixed is used as the opposite of pure, and 
indicates that B may depend on x. The dash in the cases of (mixed) 
recursion and (mixed) iteration indicates that no adjunctions are 
necessary. Two alternatives are given in the cases with no parameter. 
They are both valid even in the special case a = 0. I t is undersood 
that u+x in the table indicates that we are to adjoin to the initial 
functions that function F of two variables for which F(u, x) =u+x, 
and similarly for |w—#|. 

Rózsa Péter has shown that recursion with one parameter is 
adequate.2 She has also shown that recursion with no parameter is 
sufficient to define all recursive functions, if three recursive func­
tions (ux, the #th prime pz, and the exponent of the highest power of 
px which divides u) are adjoined to the initial functions.8 We extend 
these results by showing that even iteration with one parameter is 
adequate, tha t simpler adjunctions can be made in the case of re­
cursion with no parameter, and by discussing the various types of 
pure recursion. 

Whether all the adjunctions made are actually necessary, I do not 
know. However, it is shown in §8 that in the case of recursion with 
no parameter, some function of more than one variable must be 
adjoined. In the case of pure recursion with no parameter, more ex-

2 R. Peter "Ober den Zusammenhang der verschiedenen Begriffe der rekursiven 
Funktion, Math. Ann. vol. 110 (1934) pp. 612-632, especially pp. 619-620. 

3 R. Péter, Konstruktion nichtrekursiver Funktionen, Math. Ann. vol. I l l (1935) 
pp. 42-60, especially pp. 45-48. 
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tensive results are obtained, which show in particular that u+x and 
Q would not be sufficient to adjoin. 

In §3, we shall make the reduction to the various schemes with 
one parameter, and in §4 to schemes with no parameter, by making 
certain adjunctions to the initial functions. The lemma of §5 makes 
an essential reduction in the number of functions adjoined ; but some 
of the more difficult definitions are reserved for §6, where the proof 
of the results given in the above table is completed. In §7, it is 
shown how all recursive functions of one variable may be defined 
without introducing functions of more than one variable. The neces­
sity of the given adjunctions is discussed in §8. 

3. Reduction to schemes with one parameter. All of the reduc­
tions make use of the idea of associating an ordered pair of numbers 
with a single number. We must establish a one-to-one correspondence 
between all pairs of numbers and some numbers. This requires three 
functions J(u, v), Kx, Lx, satisfying the equations 

KJ(u, v) = u, LJ(u, v) = v. 

If we have in addition 

J(Kx, Lx) = x, 

then a one-to-one correspondence is established between all pairs 
of numbers and all numbers. However, this condition is not needed, 
and we shall not assume it. 

We shall assume that some suitable functions J, K, L are adjoined 
to the initial functions. A possible set of functions is 

J(u, v) = {u + v)2 + u, Kx = Ex, Lx = [a1'2] - Ex. 

These functions are all expressible in terms of 

u+x, u — x> x2, [x112], 

where u—x denotes any difference function. Thus it would be suffi­
cient to adjoin these functions to the initial functions. 

As a first reduction in the recursion scheme, we show that the num­
ber of parameters can be reduced to one. It is sufficient to show how 
to reduce the number of parameters by one, when there are two or 
more to begin with. In fact, it is sufficient to show how to reduce the 
number of parameters from two to one, since additional parameters 
could be carried through unchanged. 

The given scheme has the form 

F(u, v, 0) == A(u, v), F(u, v, Sx) = B(u, v, x, F(u, v, x)). 
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It is seen that the function 

F'(u, x) = F(Ku, Lu, x) 

is defined by the recursion scheme with one parameter 

F'(u, 0) = A'u, F'{u, Sx) = B'(u, x, F'(u, x)), 

where 

A'u = A(Ku, Lu), B'(u, x, y) = B(Ku, Lu, x, y). 

Finally, we may put 

F(u, v, x) = F'(J(u, v),x). 

Thus we have shown that recursion with one parameter, 

F(u, 0) = Au, F{u, Sx) = B(u, x, F(u, x)) 

is adequate. I t remains to show how the u and x may be eliminated 
from B(u, x, y). Let us first eliminate the u. (The opposite order 
could equally well be used.) We see that the function 

F'(u, x) = J(u, F(u, x)) 

is defined by the iteration with one parameter 

F'(u, 0) = A'u, F\u, Sx) = B'(x, F'(u, x)), 

where 

A'u « J(u, Au), B'(x, y) = J(Ky, B(Ky, x, Ly)). 

Finally, 

F(u, x) = LF'(u, x). 

Thus iteration with one parameter, 

F(u, 0) = Au, F(u, Sx) = B(x, F{u, x)) 

is also sufficient. Now the function 

F'(u, x) = J(x, F(u, x)) 

may be defined by 

F'(u, 0) = A'u, F'(u, Sx) - B'F'(u, x), 

where 

A'u = J(0, Au), B'y = J(SKy, B(Ky, Ly)). 

Finally, 
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F(u, x) = LF'(u, x). 

Hence pure iteration with one parameter, 

F(u, 0) = Au, F(u, Sx) = BF(u, x), 

is sufficient to define all recursive functions. The further reduction 
of replacing Au by u was discussed in §2. 

4. Elimination of the last parameter. We shall now show how to 
eliminate the last parameter. For this purpose, we shall suppose that 
the pairing functions which we have adjoined to the initial functions 
have certain additional properties, namely: 

J(0 , 0) = 0 , hence K(0) = 0 and L(0) = 0 . 
If LSx^O, then KSx^Kx and LSx = SLx. 

An example of suitable functions is 

J(u, v) == ((u + v)2 + u)2 + v, Kx=* E[x1'*], Lx = Ex, 

as is easily verified. These functions can be defined in terms of 

u + x, u — x, x2, [#1/2]> 

as was the case for the functions J , K, L mentioned in §3. 
We now discuss the meaning of the conditions imposed. If we 

think of all pairs (u, v) arranged in a table, where u denotes the 
column number and v denotes the row number, then the pair (Kx> Lx) 
traverses the table in such a way that it starts at the top of column 0 
and descends a certain number of steps; then it starts at the top of 
another column and descends a certain number of steps; and this 
process is repeated. Since we have pairing functions, every position 
in the table is traversed at some time. I t is clear in fact that the 
equations Kx = u, Lx = v have infinitely many solutions for x, one of 
which is called J(u, v), A more precise description of the way the 
table is traced out for the particular K and L mentioned above could 
easily be given. 

We showed in §3 that iteration with one parameter is adequate to 
define all recursive functions. This may be taken in the form 

F(u, 0) = u, F(u, Sx) = B(x9F(u, x)). 

The still more reduced scheme of pure iteration might be used, but 
there would be no advantage in this. We see that 

F'x = F(Kx, Lx) 
can be defined by 

F'O = 0, F'Sx = B'(x,F'x), 
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where 

„ N (KSx HLSx = 0, 

\B(Lx, y) if LSx ^ 0. 

In obtaining this result, we have taken account of the special assump­
tions concerning the pairing functions made at the beginning of this 
section. If we had not imposed these conditions, we should not have 
an expression for F'Sx in terms of x and F'x, but should have ob­
tained a generalized type of recursion (with no parameter), which 
would require a further reduction. This less direct method was fol­
lowed by R. Péter. We have finally 

F(u, x) = F'J(u, x). 

In this proof, we have obtained B'(x, y) by piecing together two 
known functions. The definition may be written explicitly as 

J5'(*, y) = 0L**.KSx + sgnLSx-B(Lx, y). 

This can be obtained by substitution if 

u + x, u0* 

are included in the initial functions. 
We have thus shown that recursion with no parameter, 

F0 = 0, FSx = B(x,Fx)t 

is adequate to define all recursive functions, if suitable functions are 
adjoined to the initial functions. 

The x can be eliminated in the same way as in §3. We see that 

F'x = J(x, Fx) 

can be defined by 

F'O « 0, F'Sx = B'F'x, 

where 

Wy - J(SKy, B(Ky, Ly)). 

Finally, 

Fx = LF'x. 

Thus we have reached the very simplest recursion scheme, pure 
recursion with no parameter, starting from 0, that is, 

F0 « 0, FSx = BFxt 
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which defines the function Fx = JBx0. 
To make this reduction, it is sufficient to adjoin 

u + x, u — x, x2, [x1/2]f u>0x 

to the initial functions. Instead of u-0x, we may of course adjoin the 
two functions ux and 0*. Since 

ux~ [ { ( « + x)2- u2- x2}/2], 

we may also say that the functions 

u + x, u— x, x2, 0*, [x/2], [x1'2] 

are sufficient to adjoin. 

5. Sufficiency of adjoining certain functions. 

LEMMA. All recursive functions are definable by any of the recursion 
schemes considered, if the functions shown in the following table are 
adjoined to the initial functions. 

Mixed 

Pure 

One Parameter 

Recursion 

—-

P,Q 

Iteration 

— • 

P,Q 

No Parameter 

u+x, u—x 

u+x, u—x, Q 

PROOF. It will be sufficient to show that the functions listed at the 
end of §4 can be defined in all cases. 

u+x. This function is given in the cases with no parameter. Other­
wise, we may define u+x = Sxu by pure iteration. 

u—x. A difference function is given in the cases with no parameter. 
Otherwise, P is given in the pure cases, and may be defined by P0 = 0 , 
PSx*=x in the mixed cases; hence we may define the two difference 
functions 

u — x = Pxu, | u — x | = (u -*- x) + (x — u). 

x2 (mixed cases). We may define Fx~x2 by 

F0 = 0, FSx **Fx + 2x+l. 

Here 2x means x-\-x, and similarly below. 
x2 (pure cases). We first define the function 
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Fx = * + 2[*1/*]. 

Notice that 

FSx = SFx + 2QSx. 

Now the following are equivalent: Sx is a square; x is of the form 
n2+2n; Fx is of the form n2+4n; Fx+4 is a square. Thus 

QSx = Q(Fx + 4). 

Hence we may put 

Fx = B*0 with By = Sy + 2Q(y + 4). 

Finally, we see tha t 

x2 - (570*0. 

This definition makes use of Q and u+x but not of P . 
0*. We may define 

0* = B*l with £;y = 0, 

except in the case with no parameter and with a = 0. In this case, we 
first define 

sgn x = Bx0 with By = 1, 

and then put 0* = 1 —sgn x. 
[x/2] (mixed cases). As in §1, we first define 

Dx = Bx0 with By = 0*, 

and then define Fx*= [x/2] by 

F0 = 0, FSx = Fx + Dx. 

[x/2] (pure cases). Here we first define 

Tx = £*0 with By = 0* + 2-0(^1>+<1"-«'). 

This is nearly the same definition given in §1 ; we observe that the 
exponent (y — l) + (l —y) vanishes if and only if y = 1, no matter what 
difference function is used. Now if we define 

Fx = B*0 with By = Sy + Ty, 

we see that 

[x/2] = Fx - x. 

[x112] (mixed cases). We define Fx= [x112] as in §1 by 
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FO - 0, FSx = Fx + 0<^*>2-**. 

[x112] (pure cases). In denning x2, we first denned 

Fx = x + 2[&'*]. 

We may put 

[si/*] = [(Fx - *) /2] . 

6. Proof of the principal results. 

THEOREM. All recursive functions are definable by any of the recursion 
schemes considered, if the functions shown in the table in §2 are adjoined 
to the initial functions. 

PROOF. This theorem may be reduced to the lemma of §5, by 
making the definitions (l)-(S) below. In carrying out the proof, defi­
nitions given in the proof of the lemma are referred to when they are 
applicable. 

(1) Define Q in terms of P by pure recursion with one parameter. 
We may use the definitions of u+x, \ u—x\, and 0* from §5. Now 

define ux by the pure recursion 

u-0 = 0, u-Sx = ux + u, 

and put X !C= XX» We next define a function F{u, x) by the pure re­
cursion 

F{u, 0) = 0, F(u, Sx) = B(u, F(u, x)), 

where 

B(u,y) =Sy + 0l»2~uK 

That is, F(u> Sx) is obtained from F(u, x) by adding 1 unless 
{F(u, X)}2 = U, in which case we add 2. This can happen only if 
x2~u. We thus see that 

(x if x2 g u, 
F(u, x) = < 

\x + Qu if x2 > u. 
Hence we may define 

Qu = F(u, Su) - Su. 

(2) Define P in terms of Q by pure iteration with one parameter. 
We may define u+x and x2 as in §5. Next define 

u>0* = B*u with£;y = 0; 
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in particular, 0^ = 1 -0*. After defining Dx=Bx0 with By = 0V, we can 
obtain the product Dx-Qx from u-0v by putting u = Dx and v = 0Qx. 
Notice that Dx-Qx is the characteristic function of odd squares. Let 

CO if y is an odd square. 
By = SSyOD*** = < 

\y + 2 otherwise. 

Thus the function B has trie effect of increasing any number by 2, 
except for an odd square, which is replaced by 0. Now consider the 
function 

Fx = Bx(x2 + x + 1). 

If x is even and positive, then x/2 additions of 2 are carried out to 
reach the next odd square # 2 + 2 # + l . The next application of B 
gives 0, and the remaining (ÜC/2) — 1 steps produce x — 2. Thus 

Fx = x — 2 if # is even and positive. 

I t is now easy to define Px. We have in fact 

Px = 0*°-0Dx'SFx + DxPSx. 

The first term can evidently be obtained by repeated substitution 
in u • 0V, and the second term can be obtained by substituting u = FSx 
and v = 0Dx. The correctness of the formula is easily checked by con­
sidering separately the cases # = 0, x even and positive, and x odd. 

(3) Define u— x and Q in terms of u+x and E by pure recursion 
with no parameter. 

We first define sgn x = Bx0 with By — l, and then put 

0* = E(2 + 2 sgn x), Qx = 0E*. 

We may then define x2 as in §5. Now 

E((u + x)2 + 3u + x + 1) = u — x if u è ff, 

since the preceding square is (w+#) 2 +2w+2x + l . We have thus de­
fined both Q and a difference function. 

(4) Define u — x in terms of w+# and Q by recursion with no 
parameter. 

Again define sgn x=B*0 with By = l, and then put 

0* = QS sgn x, Dx = £*0 with By = (K 

We may define x2 as in §5 ; the simpler definition for the mixed cases 
may now be used. Define Fx~ \xll2\ by 

F0 = 0, FSx = Fx + QSx, 
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and Px by P0 = 0, PSx = x. Then define a new function Fx by 

FO = 0, FSx - P(P* + 2£|y>2]) . 

We have 

(PP* if U1/21 is even, 

\SFx if [a1/2] is odd. 

Hence 

Fx = Ex if [x1'2] is odd, 

so that 

F((2u + 2x)2 + Su + 3x + 1) = u - x if u ^ *. 

(5) Define w + # in terms of |w— x\ by pure recursion with no 
parameter. (Using this in place of (3) and (4) gives the second alterna­
tive of the table in §2 for both types of recursion with no parameter.) 

Since 

u + x = F(u, x) — {(F(u, x) — u) — x\, 

for any function F with F(u, x) ^u+x, we have only to define some 
such function. We first define 

2x = (SS)*0, 2x+ 1 =S(2a ) , 

2* - 1 = B*0 with By = 2;y + 1, 2* = S(2* - 1). 

We may then obtain the function 

F(u, x) = | 24« - 24*+21 

by substitution. Now 

F(u, x) = | 22u - 22**11 -(22« + 22**1). 

Since the first factor is not 0, and the second factor is more than u+x, 
we have 

F{u, x) > u + x. 

7. Recursive functions of one variable. It is easy to see that all 
recursive functions of more than one variable can be obtained from recur­
sive functions of one variable, the function u-\-x, and the various identity 
functions, by substitution alone. To see this, we shall make use of the 
pairing functions of §3, 

J(u, v) = O + v)2 + uy Kx = Ex, Lx = [a1'2] - Ex. 
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Suppose now that the recursive function F(uy v) is given. If we let 

F'x = F(Kx, Lx), 

then F'x is a recursive function of one variable. But 

F(u, v) = F'J(u, v) = F'((u + v)2 + u). 

Thus F(u, v) is obtained by substitution from the four functions 

F'x, x2, u + v, /2i(w, v), 

of which the first two are recursive functions of one variable. Thus 
the proof is complete so far as functions of two variables are con­
cerned. In the case of a function of more variables, a similar argument 
serves to reduce the number of variables by one, so that repeated use 
of the argument leads to the desired result. 

The interest of this result is considerably enhanced by the fact that 
it is possible to define all recursive functions of one variable without 
making use of functions of more than one variable in the process. 
The third theorem below shows that this is the case. 

THEOREM 1. The f unctions of one variable which are obtainable from 
certain initial functions by substitution and recursion of the form 
Fx = Bxa are also obtainable if substitution is not allowed except for de­
fining functions of one variable. 

PROOF. Let us call the functions thus obtainable from the given 
initial functions when substitution is used only for defining functions 
of one variable recursivej, and functions obtainable by recursion and 
unrestricted substitution recursive2. I t will be sufficient to consider 
the class of functions obtainable by unrestricted substitution from 
recursivei functions, and to show: 

(1) All functions of one variable so obtained are recursivei. 
(2) All recursive2 functions are obtained. 
PROOF OF (1). In defining a function of one variable by successive 

substitutions, if the "innermost" substitutions are madç first, only 
functions of one variable need be defined by substitution in the 
process. But a function of one variable defined by substitution from 
recursivei functions is recursivei. 

PROOF OF (2). Our family of functions includes all the initial func­
tions and is closed with respect to substitution. Also, recursion of the 
form Fx~Bxa is allowed if B is recursivei, and hence by (1) for all 
functions B of one variable in our family. Thus the family includes 
all recursive2 functions. 
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THEOREM 2. If the initial functions include the identity and zero 
functions, and the f unction u+x, but no other functions of more than 
one variable, then all f unctions of one variable obtainable by substitution 
and recursion of the form Fx=Bxa are also obtainable by repeated use 
of the three formulas 

Fx = Ax + Bx, Fx = BAx, Fx = B*a 

to define F when A and B are known functions of one variable. 

PROOF. By the preceding theorem, it is sufficient to use substitution 
to define only functions of one variable. Now substitution of func­
tions of one variable into Ink gives one of the same functions; and 
such substitution into On gives 0\, which is one of the initial functions. 
Hence only substitution into u+x and into a function of one variable 
need be considered. In this way, we construct the functions Ax+Bx 
and BAx. 

Remark, Theorems 1 and 2 are also valid if we allow only recursion 
of the form Fx = Bx0. 

THEOREM 3. All recursive functions of one variable can be obtained 
by starting with the two functions S and E, and repeatedly using any of 
the formulas 

Fx = Ax + Bx, Fx = BAx, Fx = Bx0 

to construct a new function from known f unctions A and B. 

PROOF. The identity and zero functions of one variable can be de­
fined by 

Inx = 5*0, Oix = 7ÎiO. 

Thus by Theorem 2, we can obtain all the functions of one variable 
which we could get by substitution and recursion Fx=*Bx0 from all 
the identity and zero functions, u+x, S, and E. But by the theorem 
of §6, all recursive functions can be so obtained. 

Remarks. We could also prove a theorem similar to Theorem 2, 
with \u— x\ in place of u+x, and \Ax—BX\ in place of Ax+Bx. 
Using this, a theorem analogous to Theorem 3 could be proved, 
with Q in place of E, and |.4#— Bx\ in place of Ax+Bx. 

8. Possibility of further improvements. Were all the adjunctions 
made in the Theorem of §6 necessary? For example, in the case of 
pure recursion with one parameter, we adjoined P to the initial 
functions. This adjunction is necessary if and only if P itself cannot 
be defined. We are thus led to the interesting but apparently un-
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solved problem: Can predecessor be defined by substitution and pure 
recursion from the identity, zero, and successor functions! In a similar 
way, we may ask whether Q can be defined by pure iteration. 

In the case of recursion with no parameter, with or without a = 0, 
some adjunction to the initial functions is necessary. Indeed, some 
function of more than one variable must be adjoined. For otherwise, 
each of the initial functions would depend on at most one of its 
variables, since the only functions of more than one variable which 
are given are the identity and zero functions. Now substitution ap­
plied to functions, each depending on at most one of its variables, 
can lead only to such a function; and our recursion scheme leads to a 
function of one variable. Thus no function depending on more than 
one variable can be defined; in particular, u+x cannot be defined. 

There remains the possibility that all recursive functions of one 
variable might be definable with no adjunctions. Finally, if it were 
possible to define Q by adjoining only u+x, then the adjunction of 
u+x would be sufficient for the definition of all recursive functions. 

We come now to the simplest recursion scheme, pure recursion with 
no parameter, with or without a = 0. We know that it is sufficient to 
adjoin u+x and E, or | u — x\ and Q, to the initial functions. We shall 
show that it is not sufficient to adjoin u+x and Q, and in particular 
that P could not then be defined. This result is included in the more 
general theorem : 

THEOREM. Suppose that to the identity, zero, and successor functions, 
we adjoin the function u+x, and any number of f unctions of one variable 
each of which has one or the other of the two properties: 

Fx è x, Fx is bounded. 

Then by repeated substitution and pure recursion with no parameter, 
no function of one variable not having one or the other of these two 
properties can be defined. 

PROOF. According to Theorem 2 of §7, this reduces to the following 
lemma. 

LEMMA. From functions A and B, each having one or the other of the 
two properties of the theorem, only functions having one of these proper­
ties can be defined by the three formulas 

Fx = Ax + Bx, Fx = BAx, Fx = B*a. 

PROOF. (1) If Ax^x orBx^x, then Ax+Bx^x. If both functions 
are bounded, then so also is their sum. 
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(2) If either Ax or Bx is bounded, then so also is BAx. If both 
Ax^x and Bx^x, then BAx^x. 

(3) If Bx is bounded, then so also is Bxa. Hence we may suppose 
Bx*£x. If no two consecutive values of Bxa are equal, then the func­
tion is strictly increasing, and hence Bxa *£x. If two consecutive values 
are equal, so also are all the following values, so that the function is 
bounded. 
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