
PRIMITIVE RECURSIVE FUNCTIONS

RAPHAEL M. ROBINSON

1. Definition of recursive functions. In this paper, we shall con­
sider certain reductions in the recursion scheme for defining primi­
tive recursive functions. Hereafter, we shall refer to such functions
simply as recursive functions.1 In §1, we define what is meant by a
recursive function, and also define some recursive functions which
will be used. The statement of the principal results of the paper will
be found in §2.

By a number, we shall mean one of the natural numbers 0, 1,
2, 3, • • • . We shall consider functions of any number of variables,
each variable ranging over all numbers, and the values of the function
being numbers. Small letters will denote variables assuming numeri­
cal values, and capital letters will denote functions. In the case of a
function of one variable, we shall usually write Fx instead of F(x).

A function will be called recursive if it can be obtained from certain
initial functions by repeated substitution and recursion.

The initial functions are the following:
The identity functions ; that is, for every n and k with 1 ̂ k gw, the

function Ink defined by

The zero functions; that is, for every w^O, the function On de­
fined by

On(xh • • • , Xn) = 0.

The successor function; that is, the function 5 of one variable,
such that Sx is the next number after x.

The substitution rule is the following: If Ai, • • • , Am are known
functions of n variables, and B is a known function of m variables,

Presented to the Society, August 22, 1946; received by the editors March 5, 1947.
1 Various types of recursive functions play a fundamental role in mathematical

logic. Primitive recursive functions were used by K. Gödel, Über formal unentscheid-
bare Sâtze der Principia Mathematica und verwandter Système I, Monatshefte für
Mathematik und Physik vol. 38 (1931) pp. 173-198; for the definition, see pp. 179-
180. For a discussion of general recursive functÎDns (which may be considered to be the
computable functions), see S. C. Kleene, General recursive functions of natural num­
bers, Math. Ann. vol. 112 (1936) pp. 727-742. For some other types of recursion, see
the paper by R. Péter cited in footnote 2. In the present paper, we consider only the
simplest type of recursive function, the primitive recursive function, and no knowl­
edge of other papers is assumed.

925

926 R. M. ROBINSON [October

then a function F of n variables may be defined by

F(xh • • • , xn) = B{Ai{xh • • , xn), • • • , Am(xi, • • • , tfn)).

It is not excluded that m or n should be zero.
In particular, we can obtain by substitution the functions

o(Jn\Xij ' ' ' , Xn), Oo(Jn\Xi, ' ' * , Xn), * • • ,

that is, all constant functions. Also, if we put 0m for B, and any
functions of n variables for Ai, • • • , Am, then F is the function 0W.
Thus it was not necessary to assume all the zero functions as initial
functions; we could in fact have taken just OQ,

Furthermore, using the identity functions, any desired permuta­
tion of variables, or introduction of extra variables, may be accom­
plished. For example, given a function B of two variables, suppose it
is required to define a function F of three variables, such that

F(x, y, z) = B(z, x).

This is seen to be included in our substitution rule when written in
the form

F(x, y, z) = B(IM(X, y, z), J3i(#, y, «)).

Finally, we must tell what is meant by recursion. If A is a known
function of v variables, and B a known function of n + 2 variables,
then a function F of n+1 variables may be defined by the recursion
scheme

F(uh • • • , Un, 0) = A(uh • • • , Un)f

F(uh • • • , Un, Sx) = B(uh • • • tUn, x, F(uh • • • , un, x)).

The recursion is said to be with respect to x; the other variables
«l, • • • , «n are called parameters. In case w = 0, we may replace
A(ui, • • • , un) by a number a. This completes the definition of
what is meant by a recursive function.

Familiar examples of recursive definitions with one parameter are
those of u+x, ux, and ux, which must be made in this order. The
definitions are:

u-\-x: u-\-0 = Uj u+Sx—S(u+x); that is, Au~u, B(u, x, y)=Sy.

ux: ^-0 = 0, u-Sx=ux+u; that is, Au = 0, B(u> x, y)~y-\-u.

ux: u°=ly uSx=u*'U; that is, Au=l, B(u, x, y)~yu.

We shall make much use of the function 0*, and also of sgn x = 0°*.
We shall also use predecessor and difference, defined by

1947) PRIMITIVE RECURSIVE FUNCTIONS 927

Px: PO = 0, PSx = x]

u — x: u ~ 0 = u, u -*- Sx = P(w — x).

Notice that u—x — 0 if u<x. We also use the absolute difference

| u — x | = (w — x) + (x -*- u).

The notation w—#, without dot or vertical bars, will always be used
in an ambiguous sense, to stand for any recursive function F(u, x)
which is equal to u — x for u^xt regardless of its value when u<x.
Any such function will be called a difference function. In particular,
u — x and \u—x\ are difference functions.

The functions Dx and Txy giving the remainders when x is divided
by 2 or by 3, are defined by

Dx: DO = 0, DSx = OP';

Tx: TO = 0, TSx = 0T* + 2-()lr*-1l.

We may also describe D as the characteristic function of odd num­
bers. Two further recursive definitions are

Fx » [x/2]: F0 = 0, FSx = Fx + Dx;

Fx = [x1'*]: F0 = 0, FSx = Fx + 0<SF*>2-S*.

In the last definition, FSx is obtained from Fx by adding 1 when the
next square after x is the next number after x, but adding 0 when
the next square is larger than the next number. We may now obtain
by substitution the excess over a square, and the characteristic func­
tion of squares :

Ex = x - [xlf2]2, Qx = 0Ex.

All of the symbols defined in this section will be used with the same
meaning throughout the paper. The letters / , K, L will have a special
meaning defined in §§3 and 4. On the other hand, the symbols A, B,
F will be reserved for general functions, and may have a different
meaning each time they are used.

2. Statement of principal results. We shall consider certain more
special recursion schemes than the one which occurs in the definition
of recursive functions. One restriction is to limit the number of
parameters. Another restriction is to suppose that B does not depend
on all of its variables. If 5(«i , • • • , # , > , # , y) does not depend on the
parameters #i, «2 • • • , w«, we shall call the recursion scheme itera­
tion. (If w = 0, this is no restriction.) If B(u\t • • • y) does not
depend on x, we shall speak of pure recursion, and if it depends only on

928 R. M. ROBINSON [October

y, of pure iteration. Thus with one parameter, we have the four recur­
sion schemes :

Recursion: F(u, 0) = Au, F(u, Sx) = B(u, x,F{u, x)).

Pure Recursion: F(u, 0) = Au, F{u, Sx) = B{u, F(u, x)).

Iteration: F{u, 0) = Au, F(u, Sx) = B{x, F(u, x)).

Pure Iteration: F(u, 0) = Au, F(u, Sx) = BF(u, x).

It should be noticed, here and below, that the more special schemes
are always actually included in the more general ones, since (by using
the identity functions) a function of certain variables may always be
considered as a function of more variables.

The last two schemes are no less general, if taken in the form:

Iteration: F(u, 0) = u, F(u, Sx) = B(x,F(u, x)).

Pure Iteration: F(u, 0) = u, F{u, Sx) = BF{u, x).

For it is easily seen that if F(u, x) is defined in this way, then the
previously defined function is simply F(Au, x).

The function F(u, x) obtained by the last scheme (pure iteration)
is simply the result of applying the function B x times to u. Hence
we write

F(u, x) = B*u.

For example, u+x = Sxu.
With no parameter, we have but two recursion schemes, since

there is no distinction between recursion and iteration. These are:

Recursion: JPO = a, FSx = B(x, Fx).

Pure Recursion: F0 = a, FSx = BFx.

Since w = 0, the function A(ui, • • • , un) is replaced by the number a.
The pure recursion scheme defines the function Fx = Bxa. Unlike
Bxu above, this is a function of the one variable x, since a is a given
number.

We also consider the somewhat more special schemes where only
the value 0 is allowed for a :

Recursion: F0 = 0, FSx = B(x, Fx).

Pure Recursion: F0 = 0, FSx = BFx.

Even the last and most special recursion scheme, Fx = Bx0, will be
seen to be adequate to define all recursive functions, if two func­
tions are adjoined to the initial functions.

1947] PRIMITIVE RECURSIVE FUNCTIONS 929

For each degree of specialization of the recursion scheme, we shall
ask what recursive functions need to be adjoined to the initial func­
tions, in order that all recursive functions can be denned. It is under­
stood that we always keep the identity, zero, and successor func­
tions as initial functions, and that the substitution rule is unchanged.
It will be shown that the functions given in the following table are
sufficient to adjoin to the initial functions.

Mixed

Pure

One Parameter

Recursion

—

P

Iteration

—

Q

No Parameter

u+x, Q; or |w—#|

u+x, E; or \u—x\, Q

In the table, the word mixed is used as the opposite of pure, and
indicates that B may depend on x. The dash in the cases of (mixed)
recursion and (mixed) iteration indicates that no adjunctions are
necessary. Two alternatives are given in the cases with no parameter.
They are both valid even in the special case a = 0. I t is undersood
that u+x in the table indicates that we are to adjoin to the initial
functions that function F of two variables for which F(u, x) =u+x,
and similarly for |w—#|.

Rózsa Péter has shown that recursion with one parameter is
adequate.2 She has also shown that recursion with no parameter is
sufficient to define all recursive functions, if three recursive func­
tions (ux, the #th prime pz, and the exponent of the highest power of
px which divides u) are adjoined to the initial functions.8 We extend
these results by showing that even iteration with one parameter is
adequate, tha t simpler adjunctions can be made in the case of re­
cursion with no parameter, and by discussing the various types of
pure recursion.

Whether all the adjunctions made are actually necessary, I do not
know. However, it is shown in §8 that in the case of recursion with
no parameter, some function of more than one variable must be
adjoined. In the case of pure recursion with no parameter, more ex-

2 R. Peter "Ober den Zusammenhang der verschiedenen Begriffe der rekursiven
Funktion, Math. Ann. vol. 110 (1934) pp. 612-632, especially pp. 619-620.

3 R. Péter, Konstruktion nichtrekursiver Funktionen, Math. Ann. vol. I l l (1935)
pp. 42-60, especially pp. 45-48.

930 R. M. ROBINSON [October

tensive results are obtained, which show in particular that u+x and
Q would not be sufficient to adjoin.

In §3, we shall make the reduction to the various schemes with
one parameter, and in §4 to schemes with no parameter, by making
certain adjunctions to the initial functions. The lemma of §5 makes
an essential reduction in the number of functions adjoined ; but some
of the more difficult definitions are reserved for §6, where the proof
of the results given in the above table is completed. In §7, it is
shown how all recursive functions of one variable may be defined
without introducing functions of more than one variable. The neces­
sity of the given adjunctions is discussed in §8.

3. Reduction to schemes with one parameter. All of the reduc­
tions make use of the idea of associating an ordered pair of numbers
with a single number. We must establish a one-to-one correspondence
between all pairs of numbers and some numbers. This requires three
functions J(u, v), Kx, Lx, satisfying the equations

KJ(u, v) = u, LJ(u, v) = v.

If we have in addition

J(Kx, Lx) = x,

then a one-to-one correspondence is established between all pairs
of numbers and all numbers. However, this condition is not needed,
and we shall not assume it.

We shall assume that some suitable functions J, K, L are adjoined
to the initial functions. A possible set of functions is

J(u, v) = {u + v)2 + u, Kx = Ex, Lx = [a1'2] - Ex.

These functions are all expressible in terms of

u+x, u — x> x2, [x112],

where u—x denotes any difference function. Thus it would be suffi­
cient to adjoin these functions to the initial functions.

As a first reduction in the recursion scheme, we show that the num­
ber of parameters can be reduced to one. It is sufficient to show how
to reduce the number of parameters by one, when there are two or
more to begin with. In fact, it is sufficient to show how to reduce the
number of parameters from two to one, since additional parameters
could be carried through unchanged.

The given scheme has the form

F(u, v, 0) == A(u, v), F(u, v, Sx) = B(u, v, x, F(u, v, x)).

i947l PRIMITIVE RECURSIVE FUNCTIONS 931

It is seen that the function

F'(u, x) = F(Ku, Lu, x)

is defined by the recursion scheme with one parameter

F'(u, 0) = A'u, F'{u, Sx) = B'(u, x, F'(u, x)),

where

A'u = A(Ku, Lu), B'(u, x, y) = B(Ku, Lu, x, y).

Finally, we may put

F(u, v, x) = F'(J(u, v),x).

Thus we have shown that recursion with one parameter,

F(u, 0) = Au, F{u, Sx) = B(u, x, F(u, x))

is adequate. I t remains to show how the u and x may be eliminated
from B(u, x, y). Let us first eliminate the u. (The opposite order
could equally well be used.) We see that the function

F'(u, x) = J(u, F(u, x))

is defined by the iteration with one parameter

F'(u, 0) = A'u, F\u, Sx) = B'(x, F'(u, x)),

where

A'u « J(u, Au), B'(x, y) = J(Ky, B(Ky, x, Ly)).

Finally,

F(u, x) = LF'(u, x).

Thus iteration with one parameter,

F(u, 0) = Au, F(u, Sx) = B(x, F{u, x))

is also sufficient. Now the function

F'(u, x) = J(x, F(u, x))

may be defined by

F'(u, 0) = A'u, F'(u, Sx) - B'F'(u, x),

where

A'u = J(0, Au), B'y = J(SKy, B(Ky, Ly)).

Finally,

932 R. M. ROBINSON [October

F(u, x) = LF'(u, x).

Hence pure iteration with one parameter,

F(u, 0) = Au, F(u, Sx) = BF(u, x),

is sufficient to define all recursive functions. The further reduction
of replacing Au by u was discussed in §2.

4. Elimination of the last parameter. We shall now show how to
eliminate the last parameter. For this purpose, we shall suppose that
the pairing functions which we have adjoined to the initial functions
have certain additional properties, namely:

J(0 , 0) = 0 , hence K(0) = 0 and L(0) = 0 .
If LSx^O, then KSx^Kx and LSx = SLx.

An example of suitable functions is

J(u, v) == ((u + v)2 + u)2 + v, Kx=* E[x1'*], Lx = Ex,

as is easily verified. These functions can be defined in terms of

u + x, u — x, x2, [#1/2]>

as was the case for the functions J , K, L mentioned in §3.
We now discuss the meaning of the conditions imposed. If we

think of all pairs (u, v) arranged in a table, where u denotes the
column number and v denotes the row number, then the pair (Kx> Lx)
traverses the table in such a way that it starts at the top of column 0
and descends a certain number of steps; then it starts at the top of
another column and descends a certain number of steps; and this
process is repeated. Since we have pairing functions, every position
in the table is traversed at some time. I t is clear in fact that the
equations Kx = u, Lx = v have infinitely many solutions for x, one of
which is called J(u, v), A more precise description of the way the
table is traced out for the particular K and L mentioned above could
easily be given.

We showed in §3 that iteration with one parameter is adequate to
define all recursive functions. This may be taken in the form

F(u, 0) = u, F(u, Sx) = B(x9F(u, x)).

The still more reduced scheme of pure iteration might be used, but
there would be no advantage in this. We see that

F'x = F(Kx, Lx)
can be defined by

F'O = 0, F'Sx = B'(x,F'x),

1947] PRIMITIVE RECURSIVE FUNCTIONS 933

where

„ N (KSx HLSx = 0,

\B(Lx, y) if LSx ^ 0.

In obtaining this result, we have taken account of the special assump­
tions concerning the pairing functions made at the beginning of this
section. If we had not imposed these conditions, we should not have
an expression for F'Sx in terms of x and F'x, but should have ob­
tained a generalized type of recursion (with no parameter), which
would require a further reduction. This less direct method was fol­
lowed by R. Péter. We have finally

F(u, x) = F'J(u, x).

In this proof, we have obtained B'(x, y) by piecing together two
known functions. The definition may be written explicitly as

J5'(*, y) = 0L**.KSx + sgnLSx-B(Lx, y).

This can be obtained by substitution if

u + x, u0*

are included in the initial functions.
We have thus shown that recursion with no parameter,

F0 = 0, FSx = B(x,Fx)t

is adequate to define all recursive functions, if suitable functions are
adjoined to the initial functions.

The x can be eliminated in the same way as in §3. We see that

F'x = J(x, Fx)

can be defined by

F'O « 0, F'Sx = B'F'x,

where

Wy - J(SKy, B(Ky, Ly)).

Finally,

Fx = LF'x.

Thus we have reached the very simplest recursion scheme, pure
recursion with no parameter, starting from 0, that is,

F0 « 0, FSx = BFxt

934 R. M. ROBINSON [October

which defines the function Fx = JBx0.
To make this reduction, it is sufficient to adjoin

u + x, u — x, x2, [x1/2]f u>0x

to the initial functions. Instead of u-0x, we may of course adjoin the
two functions ux and 0*. Since

ux~ [{ (« + x)2- u2- x2}/2],

we may also say that the functions

u + x, u— x, x2, 0*, [x/2], [x1'2]

are sufficient to adjoin.

5. Sufficiency of adjoining certain functions.

LEMMA. All recursive functions are definable by any of the recursion
schemes considered, if the functions shown in the following table are
adjoined to the initial functions.

Mixed

Pure

One Parameter

Recursion

—-

P,Q

Iteration

— •

P,Q

No Parameter

u+x, u—x

u+x, u—x, Q

PROOF. It will be sufficient to show that the functions listed at the
end of §4 can be defined in all cases.

u+x. This function is given in the cases with no parameter. Other­
wise, we may define u+x = Sxu by pure iteration.

u—x. A difference function is given in the cases with no parameter.
Otherwise, P is given in the pure cases, and may be defined by P0 = 0 ,
PSx*=x in the mixed cases; hence we may define the two difference
functions

u — x = Pxu, | u — x | = (u -*- x) + (x — u).

x2 (mixed cases). We may define Fx~x2 by

F0 = 0, FSx **Fx + 2x+l.

Here 2x means x-\-x, and similarly below.
x2 (pure cases). We first define the function

i947l PRIMITIVE RECURSIVE FUNCTIONS 935

Fx = * + 2[*1/*].

Notice that

FSx = SFx + 2QSx.

Now the following are equivalent: Sx is a square; x is of the form
n2+2n; Fx is of the form n2+4n; Fx+4 is a square. Thus

QSx = Q(Fx + 4).

Hence we may put

Fx = B*0 with By = Sy + 2Q(y + 4).

Finally, we see tha t

x2 - (570*0.

This definition makes use of Q and u+x but not of P .
0*. We may define

0* = B*l with £;y = 0,

except in the case with no parameter and with a = 0. In this case, we
first define

sgn x = Bx0 with By = 1,

and then put 0* = 1 —sgn x.
[x/2] (mixed cases). As in §1, we first define

Dx = Bx0 with By = 0*,

and then define Fx*= [x/2] by

F0 = 0, FSx = Fx + Dx.

[x/2] (pure cases). Here we first define

Tx = £*0 with By = 0* + 2-0(^1>+<1"-«').

This is nearly the same definition given in §1 ; we observe that the
exponent (y — l) + (l —y) vanishes if and only if y = 1, no matter what
difference function is used. Now if we define

Fx = B*0 with By = Sy + Ty,

we see that

[x/2] = Fx - x.

[x112] (mixed cases). We define Fx= [x112] as in §1 by

936 R. M. ROBINSON [October

FO - 0, FSx = Fx + 0<^*>2-**.

[x112] (pure cases). In denning x2, we first denned

Fx = x + 2[&'*].

We may put

[si/*] = [(Fx - *) /2] .

6. Proof of the principal results.

THEOREM. All recursive functions are definable by any of the recursion
schemes considered, if the functions shown in the table in §2 are adjoined
to the initial functions.

PROOF. This theorem may be reduced to the lemma of §5, by
making the definitions (l)-(S) below. In carrying out the proof, defi­
nitions given in the proof of the lemma are referred to when they are
applicable.

(1) Define Q in terms of P by pure recursion with one parameter.
We may use the definitions of u+x, \ u—x\, and 0* from §5. Now

define ux by the pure recursion

u-0 = 0, u-Sx = ux + u,

and put X !C= XX» We next define a function F{u, x) by the pure re­
cursion

F{u, 0) = 0, F(u, Sx) = B(u, F(u, x)),

where

B(u,y) =Sy + 0l»2~uK

That is, F(u> Sx) is obtained from F(u, x) by adding 1 unless
{F(u, X)}2 = U, in which case we add 2. This can happen only if
x2~u. We thus see that

(x if x2 g u,
F(u, x) = <

\x + Qu if x2 > u.
Hence we may define

Qu = F(u, Su) - Su.

(2) Define P in terms of Q by pure iteration with one parameter.
We may define u+x and x2 as in §5. Next define

u>0* = B*u with£;y = 0;

i947] PRIMITIVE RECURSIVE FUNCTIONS 937

in particular, 0^ = 1 -0*. After defining Dx=Bx0 with By = 0V, we can
obtain the product Dx-Qx from u-0v by putting u = Dx and v = 0Qx.
Notice that Dx-Qx is the characteristic function of odd squares. Let

CO if y is an odd square.
By = SSyOD*** = <

\y + 2 otherwise.

Thus the function B has trie effect of increasing any number by 2,
except for an odd square, which is replaced by 0. Now consider the
function

Fx = Bx(x2 + x + 1).

If x is even and positive, then x/2 additions of 2 are carried out to
reach the next odd square # 2 + 2 # + l . The next application of B
gives 0, and the remaining (ÜC/2) — 1 steps produce x — 2. Thus

Fx = x — 2 if # is even and positive.

I t is now easy to define Px. We have in fact

Px = 0*°-0Dx'SFx + DxPSx.

The first term can evidently be obtained by repeated substitution
in u • 0V, and the second term can be obtained by substituting u = FSx
and v = 0Dx. The correctness of the formula is easily checked by con­
sidering separately the cases # = 0, x even and positive, and x odd.

(3) Define u— x and Q in terms of u+x and E by pure recursion
with no parameter.

We first define sgn x = Bx0 with By — l, and then put

0* = E(2 + 2 sgn x), Qx = 0E*.

We may then define x2 as in §5. Now

E((u + x)2 + 3u + x + 1) = u — x if u è ff,

since the preceding square is (w+#) 2 +2w+2x + l . We have thus de­
fined both Q and a difference function.

(4) Define u — x in terms of w+# and Q by recursion with no
parameter.

Again define sgn x=B*0 with By = l, and then put

0* = QS sgn x, Dx = £*0 with By = (K

We may define x2 as in §5 ; the simpler definition for the mixed cases
may now be used. Define Fx~ \xll2\ by

F0 = 0, FSx = Fx + QSx,

938 R. M. ROBINSON [October

and Px by P0 = 0, PSx = x. Then define a new function Fx by

FO = 0, FSx - P(P* + 2£|y>2]) .

We have

(PP* if U1/21 is even,

\SFx if [a1/2] is odd.

Hence

Fx = Ex if [x1'2] is odd,

so that

F((2u + 2x)2 + Su + 3x + 1) = u - x if u ^ *.

(5) Define w + # in terms of |w— x\ by pure recursion with no
parameter. (Using this in place of (3) and (4) gives the second alterna­
tive of the table in §2 for both types of recursion with no parameter.)

Since

u + x = F(u, x) — {(F(u, x) — u) — x\,

for any function F with F(u, x) ^u+x, we have only to define some
such function. We first define

2x = (SS)*0, 2x+ 1 =S(2a) ,

2* - 1 = B*0 with By = 2;y + 1, 2* = S(2* - 1).

We may then obtain the function

F(u, x) = | 24« - 24*+21

by substitution. Now

F(u, x) = | 22u - 22**11 -(22« + 22**1).

Since the first factor is not 0, and the second factor is more than u+x,
we have

F{u, x) > u + x.

7. Recursive functions of one variable. It is easy to see that all
recursive functions of more than one variable can be obtained from recur­
sive functions of one variable, the function u-\-x, and the various identity
functions, by substitution alone. To see this, we shall make use of the
pairing functions of §3,

J(u, v) = O + v)2 + uy Kx = Ex, Lx = [a1'2] - Ex.

19471 PRIMITIVE RECURSIVE FUNCTIONS 939

Suppose now that the recursive function F(uy v) is given. If we let

F'x = F(Kx, Lx),

then F'x is a recursive function of one variable. But

F(u, v) = F'J(u, v) = F'((u + v)2 + u).

Thus F(u, v) is obtained by substitution from the four functions

F'x, x2, u + v, /2i(w, v),

of which the first two are recursive functions of one variable. Thus
the proof is complete so far as functions of two variables are con­
cerned. In the case of a function of more variables, a similar argument
serves to reduce the number of variables by one, so that repeated use
of the argument leads to the desired result.

The interest of this result is considerably enhanced by the fact that
it is possible to define all recursive functions of one variable without
making use of functions of more than one variable in the process.
The third theorem below shows that this is the case.

THEOREM 1. The f unctions of one variable which are obtainable from
certain initial functions by substitution and recursion of the form
Fx = Bxa are also obtainable if substitution is not allowed except for de­
fining functions of one variable.

PROOF. Let us call the functions thus obtainable from the given
initial functions when substitution is used only for defining functions
of one variable recursivej, and functions obtainable by recursion and
unrestricted substitution recursive2. I t will be sufficient to consider
the class of functions obtainable by unrestricted substitution from
recursivei functions, and to show:

(1) All functions of one variable so obtained are recursivei.
(2) All recursive2 functions are obtained.
PROOF OF (1). In defining a function of one variable by successive

substitutions, if the "innermost" substitutions are madç first, only
functions of one variable need be defined by substitution in the
process. But a function of one variable defined by substitution from
recursivei functions is recursivei.

PROOF OF (2). Our family of functions includes all the initial func­
tions and is closed with respect to substitution. Also, recursion of the
form Fx~Bxa is allowed if B is recursivei, and hence by (1) for all
functions B of one variable in our family. Thus the family includes
all recursive2 functions.

940 R. M. ROBINSON [October

THEOREM 2. If the initial functions include the identity and zero
functions, and the f unction u+x, but no other functions of more than
one variable, then all f unctions of one variable obtainable by substitution
and recursion of the form Fx=Bxa are also obtainable by repeated use
of the three formulas

Fx = Ax + Bx, Fx = BAx, Fx = B*a

to define F when A and B are known functions of one variable.

PROOF. By the preceding theorem, it is sufficient to use substitution
to define only functions of one variable. Now substitution of func­
tions of one variable into Ink gives one of the same functions; and
such substitution into On gives 0\, which is one of the initial functions.
Hence only substitution into u+x and into a function of one variable
need be considered. In this way, we construct the functions Ax+Bx
and BAx.

Remark, Theorems 1 and 2 are also valid if we allow only recursion
of the form Fx = Bx0.

THEOREM 3. All recursive functions of one variable can be obtained
by starting with the two functions S and E, and repeatedly using any of
the formulas

Fx = Ax + Bx, Fx = BAx, Fx = Bx0

to construct a new function from known f unctions A and B.

PROOF. The identity and zero functions of one variable can be de­
fined by

Inx = 5*0, Oix = 7ÎiO.

Thus by Theorem 2, we can obtain all the functions of one variable
which we could get by substitution and recursion Fx=*Bx0 from all
the identity and zero functions, u+x, S, and E. But by the theorem
of §6, all recursive functions can be so obtained.

Remarks. We could also prove a theorem similar to Theorem 2,
with \u— x\ in place of u+x, and \Ax—BX\ in place of Ax+Bx.
Using this, a theorem analogous to Theorem 3 could be proved,
with Q in place of E, and |.4#— Bx\ in place of Ax+Bx.

8. Possibility of further improvements. Were all the adjunctions
made in the Theorem of §6 necessary? For example, in the case of
pure recursion with one parameter, we adjoined P to the initial
functions. This adjunction is necessary if and only if P itself cannot
be defined. We are thus led to the interesting but apparently un-

x947l PRIMITIVE RECURSIVE FUNCTIONS 941

solved problem: Can predecessor be defined by substitution and pure
recursion from the identity, zero, and successor functions! In a similar
way, we may ask whether Q can be defined by pure iteration.

In the case of recursion with no parameter, with or without a = 0,
some adjunction to the initial functions is necessary. Indeed, some
function of more than one variable must be adjoined. For otherwise,
each of the initial functions would depend on at most one of its
variables, since the only functions of more than one variable which
are given are the identity and zero functions. Now substitution ap­
plied to functions, each depending on at most one of its variables,
can lead only to such a function; and our recursion scheme leads to a
function of one variable. Thus no function depending on more than
one variable can be defined; in particular, u+x cannot be defined.

There remains the possibility that all recursive functions of one
variable might be definable with no adjunctions. Finally, if it were
possible to define Q by adjoining only u+x, then the adjunction of
u+x would be sufficient for the definition of all recursive functions.

We come now to the simplest recursion scheme, pure recursion with
no parameter, with or without a = 0. We know that it is sufficient to
adjoin u+x and E, or | u — x\ and Q, to the initial functions. We shall
show that it is not sufficient to adjoin u+x and Q, and in particular
that P could not then be defined. This result is included in the more
general theorem :

THEOREM. Suppose that to the identity, zero, and successor functions,
we adjoin the function u+x, and any number of f unctions of one variable
each of which has one or the other of the two properties:

Fx è x, Fx is bounded.

Then by repeated substitution and pure recursion with no parameter,
no function of one variable not having one or the other of these two
properties can be defined.

PROOF. According to Theorem 2 of §7, this reduces to the following
lemma.

LEMMA. From functions A and B, each having one or the other of the
two properties of the theorem, only functions having one of these proper­
ties can be defined by the three formulas

Fx = Ax + Bx, Fx = BAx, Fx = B*a.

PROOF. (1) If Ax^x orBx^x, then Ax+Bx^x. If both functions
are bounded, then so also is their sum.

942 R. M. ROBINSON

(2) If either Ax or Bx is bounded, then so also is BAx. If both
Ax^x and Bx^x, then BAx^x.

(3) If Bx is bounded, then so also is Bxa. Hence we may suppose
Bx*£x. If no two consecutive values of Bxa are equal, then the func­
tion is strictly increasing, and hence Bxa *£x. If two consecutive values
are equal, so also are all the following values, so that the function is
bounded.

UNIVERSITY OF CALIFORNIA AND
PRINCETON UNIVERSITY

