
RATIONAL HARMONIC CURVES 

EDWARD KASNER AND JOHN D E C I C C O 

1. Introduction. We shall study curves related to rational frac­
tional functions of a complex variable. This will generalize known 
results of curves related to rational integral functions. 

Curves defined by setting the real part of a polynomial (rational 
integral function) in the complex variable u=x+iy equal to zero are 
well known. These had been studied initially by Briot and Bouquet, 
and Bôcher; and finally characteristic properties have been given by 
Kasner. These curves have been called algebraic potential curves by 
Kasner, and this term is employed in later papers by Loria and in the 
German Encyclopedia. But we shall find it more convenient to use 
the term: polynomial harmonic or polynomial potential curves. 

We define a rational harmonic or rational potential curve to be the 
locus obtained by setting the real part of a rational fractional func­
tion of a complex variable u=x+iy equal to zero. The class of 
rational harmonic curves of course includes the class of polynomial 
harmonic curves. 

We shall obtain various geometric properties of rational har­
monic curves. These generalize corresponding results of Briot and 
Bouquet, and Kasner concerning the polynomial potential curves. 
We shall prove that the real asymptotes of a rational potential curve are 
concurrent and make equal angles with one another; the remaining 
asymptotes are minimal. This condition is only necessary but not 
sufficient. We do find a characteristic property of rational potential 
curves by studying the related focal properties. In the final part of 
our paper, we study the Schwarzian reflection with respect to a 
rational harmonic curve. The satellite of a rational harmonic curve is 
itself. This result gives the largest known class of self-satellite alge­
braic curves. 

2. Theorems of Briot and Bouquet, and Kasner concerning poly­
nomial potential curves. For purposes of contrast, certain theorems 
concerning polynomial harmonic curves will be stated. 

The theorem of Briot and Bouquet concerning the asymptotes of 
a polynomial harmonic curve is as follows.1 

The n asymptotes of a polynomial potential curve of degree n are all 

Presented to the Society, December 29, 1946; received by the editors October 10, 
1946. 

1 Briot and Bouquet, Theorie des fonctions elliptiques, vol. 4, Paris, Gauthier-
Villar, 1875, chap. 2, p. 226. See also Bôcher, Göttingen prize memoir. 
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real, concurrent, and disposed symmetrically about their common point, 
the angle between consecutive asympotes being ir/n. 

In all cases, the point of concurrence O of the asymptotes is a 
center of the curve. That is, if any line is drawn through 0, the sum of 
the distances measured from 0 on one side of 0 is the same as the 
corresponding sum for the points on the other side. This follows 
from the fact that when the origin of coordinates is taken at 0, all 
the terms of degree (w — 1) disappear. 

Kasner noted that this result is not characteristic for polynomial 
harmonic curves of degree w ^ 4 . Some of Kasner's characterizations 
of polynomial harmonic curves are here stated.2 

An algebraic curve is polynomial potential if and only if it is apolar to 
the fundamental conic of euclidean geometry which consists of the circu­
lar points I and J at infinity. 

The polar curves of a circular point I (or J ) with respect to a poly­
nomial potential curve degenerate into sets of straight lines passing 
through the other circular point J (or Z), and conversely. 

An algebraic curve is polynomial harmonic when and only when the 
polar conies with respect to the curve are rectangular hyperbolas. 

All the polars of polynomial potential curves are also polynomial 
potential curves. 

Any curve of degree n is polynomial potential if and only if it passes 
through the n2 foci of a curve of class n. 

Each polynomial harmonic curve of degree n passes through the 
foci of an infinite number of systems of confocal curves of class n. 

Two algebraic curves of degree n are conjugate polynomial potential 
curves if and only if they intersect orthogonally in the foci of a curve of 
class n. 

Kasner has given also various geometric characterizations of 
polynomial harmonic surfaces in space.3 

3. Our theorem concerning the asymptotes of a rational potential 
curve. Consider a rational conformai transformation of the form 

apur + aiur~l + • • • + ar 

bou* + hu8"1 + • • • + * . 

A0v
r + Ayr1 + • • • + Ar 

B0v
s + B&*-1 + • • • + Bs 

2 Kasner, On the algebraic potential curves, Bull. Amer. Math. Soc. vol.. 7 (1901) 
pp. 392-399. 

3 Kasner, Some properties of potential surfaces, Bull. Amer. Math. Soc. vol. 8 (1902) 
pp. 243-248. 
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F(v) 

G(v) 
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in the conjugate complex variables u = x-\-iy and v~x—iy. Of course, 
Aj is the conjugate of ay for jr = 0 , 1, 2, • • • , r, and Bk is the conju­
gate of bk for & = 0, 1, 2, • • • , s. The leading coefficients (a0, &o, Ao, 
Bo) axe assumed to be all different from zero. The polynomials f{u) 
and g{u) (and also F(v) and G(v)) have no common factors. 

We define a rational harmonic curve as the locus obtained by setting 
the real part of the rational fractional function U—f(u)/g(u) equal 
to zero. Thus a rational harmonic curve is the image in the (x, y)-
plane of the F-axis defined in the (X, F)-plane by X = 0 or U+V = 0 
under the rational conformai transformation (1). Therefore a rational 
harmonic or potential curve of total degree not exceeding n = r+s is 
defined by the equation 

(a0u
r + aw1 + • - • + ar)(B0v

8 + BxV*~l + • • • + £ . ) 

+ (AoV + Axv^ + • • • + Ar)(hu* + M*""1 + • • • + b.) - 0, 

where we may assume that the integers r and s are such that r^s^O so 
that the degree of U=f(u)/g(u) (or V~F(v)/G(v)) is r â l . For other­
wise, (1) followed by an inversion and reflection will define the same 
rational harmonic curve (2). (2) may be written in the form 

(3) f(u)G(v)+F(v)g(u) = 0. 

Of course, the left-hand member of equation (2) or (3) is a poly­
nomial in (u, v) or (x, y), of total degree which is not greater than 
fi =r+s. This polynomial does not satisfy the Laplace equation ; but we 
have proved elsewhere that it does obey a certain partial differential 
equation of fourth order.4. 

In particular, we can show by (2) that the only real rational har­
monic conic sections are the circles and the rectangular hyperbolas. Of 
course, the latter are the only real polynomial harmonic curves of 
second degree. 

Now we shall state the following result. The proof is given in §4. 

FUNDAMENTAL THEOREM. Let a rational potential curve be defined by 
setting equal to zero the real part of a rational fractional function of a 
complex variable u = x+iy of degree r^l. This is given by an equation 
of the form P(xf y) = 0 , where P(x, y), in general not harmonic, is a 
polynomial of degree n — 2r — k where O^k^r. There are k real asymp­
totes all of which pass through a common point and make equal angles 

4 Kasner and DeCicco, A partial differential equation of fourth order connected 
with rational functions of a complex variable, Proc. Nat. Acad. Sci. U.S.A. vol. 32 (1946) 
pp. 326-328. See also a forthcoming paper, Partial differential equations related to 
rational functions of a complex variable. Duke Math. J. (1947). 
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with one another. The angle between consecutive asymptotes is tr/k. 
The remaining 2(r — k) asymptotes are minimal. 

Of course, if & = 0 there are no real asymptotes, and all the 
asymptotes are minimal. On the other hand, if k~l there is only 
one real asymptote. 

When k = r, this result reduces to the theorem of Briot and Bouquet 
concerning the asymptotes of polynomial potential curves. Thus our 
fundamental theorem is an extension to rational fractional functions 
of the theorem of Briot and Bouquet. 

4. Proof of the fundamental theorem. It is noted that if r>sf the 
degree of the rational potential curve (2) is exactly n=r-\-s. In this 
case, let k = r — s, so that the degree is n = 2r — k. On the other hand, 
if r = s the degree of the curve is equal to or less than p + s = 2r ac­
cording as the expression (aoBo+Aobo) is not or is zero. 

If r>5>0, so that n=r-fs = 2r — k, the rational potential curve (2) 
passes through each of the circular points I and / at infinity. In 
general, there are s = r — k branches of the curve which pass through 
each of these circular points. The curve intersects the line at infinity 
s = r — k times in the circular point / , s = r — k times in the circular 
point J , and in n — 2s ~r — s = k other real points. 

If r = s>0, and aoBo+Aobo^O, the degree of the curve is n~2r so 
that fe = 0. The curve intersects the line at infinity r times in the 
circular point I and r times in the circular point JT. 

Let r = 5 > 0 and let aoBo~\-Aob0 = 0. There must exist a least integer 
k such that 0<k^r for which the expression aoBk+Akbo, which is 
the coefficient of urvr~"k in (2), is different from zero. For otherwise, 
this would mean that (1) is degenerate. Since the conditions 

aoBj + Ajfo = 0, A^bj + a^Bo = 0, for 7 = 0, 1, 2, • • • , k — 1; 
(4) 

aoBk + Akh 7* 0, Aç>bu + akB0 ^ 0 

are satisfied, we find that the equation (2) may be written in the form 

(a0W + aw*-1 H + ar)(Bkv*~h + Bk+1v
r-^1 + • • • + Br) 

+ (AoV* + A1v'-i+ . . . +Ar) 

• {bkU*~k + bk+lU^k^ +...+br) 

(5) + (BoV + Bxv^1 + • • • + JB^iir-w-1) 

• {aku
r-k + ak+iur-k~1 + • • . + Or) 

+ (b0u
r + bxur~l + • • • + bk^u*-**1) 

. (Akv*~k + Ak+1V-k-1 + • • • + Ar) « 0. 
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From (4) and (5), we find that the degree of the curve (5) is exactly 
ti — 2r — k. The curve intersects the line at infinity (r — k) times in the 
circular point I , {r — k) times in the circular point J , and in k other 
real points. 

Thus unless our rational harmonic curve reduces to a polynomial 
harmonic curve, it is found that the rational harmonic curves always pass 
through the circular points I and J. 

It can be proved by the equation (2) of a rational potential curve 
that if r>s*zl so that n=r+s = 2r — k, the curve has s = r — k asymp­
totes through the circular point I and s = r — k asymptotes through 
the circular point / . Similarly the curve (5) where r — s*tl and the 
degree is n = 2r — k, O^k^r, has r — k asymptotes passing through 
I and r — k asymptotes passing through / . 

Next we consider the real asymptotes of the rational potential 
curve (2) where r>s^0 so that its degree is n = r+s = 2r — k. The 
equation of any non-minimal line may be written in the form 
v = mu+py where w ^ O and the inclination to the #-axis is 
6= — (l/2i) log m. If this line is to be an asymptote of the curve (2), 
we find, upon substituting this into equation (2) and setting the coeffi­
cients of w ^ a n d î/ r+s-1 equal to zero, the following conditions on m 
and p. 

a0B0m
8 + Aobomr = 0, 

(6) a^otn8 + aom'-^sBop + Bt) 

+ A0bmr + hm'-^rAop + Ai) = 0. 

These equations are found to be equivalent to the system 

aoB0m
s + Aobomr = 0, 

(7) A0B0(aobi — aibo)m + aob0A0Bo(r — s)p 

+ aobo(AiBo - AoBx) = 0. 

Thus if r>s^0 so that the degree of the curve is n = r+s~2r — kt 

there arer—s = k real asymptotes, all of which pass through a common 
point and make equal angles with one another. The angle between consecu­
tive asymptotes is w/k. 

It is noted that by a translation, any rational harmonic curve is 
changed into a rational harmonic curve. Upon translating (2) so that 
the new origin O is the common point of intersection of the real 
asymptotes, it is found that the rational potential curve (2) assumes 
a similar form with the conditions 

(8) a0bi - aJ>o = 0, AiBQ - A0Bi = 0. 
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It follows by these conditions and (2) that the point O is not in general 
a center of the curve. The origin O is a center if and only if 

(9) either a0B0 + A oh = 0 or a± = Ai = bi = B\ = 0. 

For a polynomial potential curve, the latter conditions of (9) are 
valid, and thus the point O is a center. 

If r = s, there are no non-minimal asymptotes when aoBo+Aoh^O. 
Let k be the integer where 0 <k ^r} for which the conditions (4) hold. 
The equation of the curve is given by (5). Its degree is n = 2r — k. 
Upon eliminating v between the equation of the line : v = mu+p, where 
m ^ O , and (5), it is found that if this line is to be an asymptote of 
(5) the quantities m and p must satisfy the two conditions 

(aoBk + Akbo)mr-k + (A0bk + akB0)rnr = 0, 

Wr~*~1^/' ~" ®(a°Bk + Akb°ÏP + (ao£*+i + Ak+1b0)] 

+ mr-k[a1Bk + Akbi] + mr[A0bk+1 + ak+iB0] 

+ rn*-l[r(A,bk + akB0)p + {Axbk + akBl)} = 0. 

These equations are equivalent to the system 

(a0Bk + Akbo) + (Aobk + akB0)m
k = 0, 

k(A0bk + akB0)(a0Bk + AkbQ)p 
+ [(aoBk + Akbo)(A0bk+1 + ak+iB0) 

— (Aobk + akB0)(aiBk + Akbi)]m 

+ [(a0Bk + Akh)(Axbk + ajcBi) 

— (Aobk + akB0)(a0Bk+1 + Ak+ifo)] == 0. 

Thus for the rational potential curve (5) of degree n = 2r — k, there are 
k real asymptotes, all of which pass through a common point and make 
equal angles with one another. The angle between consecutive asymptotes 
is w/k. 

I t is found by (11) that the common center of the real asymptotes 
is not in general a center of the curve (5). 

This completes the proof of our fundamental theorem. 

5. Other properties of rational potential curves. An examination 
of equation (3) which defines a rational harmonic curve yields: 

An algebraic curve of degree n not exceeding (r-\-s), where r> 1 and 
s > 1, is rational harmonic if and only if it passes through the r2 foci of 
a curve Cr of class r and the s2 foci of a curve Cs of class s such that no 
minimal line contains a focus of Cr and a focus of C8. 

Of course, each rational harmonic curve of degree n^r-\-s passes 
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through the r2 foci of an infinite number of confocal curves Cr of 
class r and the s2 foci of an infinite number of confocal curves Cs of 
class s. 

If the real and imaginary parts of an analytic function of a complex 
variable are set equal to zero, the resulting curves may be called 
conjugate harmonic. Thus a pair of algebraic curves are conjugate 
rational harmonic if their equations are of the form 

(12) f(u)G(v) + F(v)g(u) = 0, f(u)G(v) - F(v)g(u) « 0, 

where the various functions appearing in these equations are the 
polynomials defined by equations (1). 

A pair of algebraic curves of degree n^r+s are conjugate rational 
harmonic if and only if they intersect orthogonally in the r2 foci of a 
system of confocal curves Cr of class r and in the s2 foci of another 
system of confocal curves C8 of class s, such that no minimal line con­
tains a focus of Cr and a focus of C«. 

I t is remarked that the polar curves of a rational harmonic curve 
are not in general rational harmonic.6 

6. Satellite theory. A Schwarzian reflection or conformai symmetry 
may be defined as a reverse conformai transformation of period two. 
I t results that a Schwarzian reflection leaves fixed the points of a 
unique analytic curve. If the curve is given in minimal coordinates 
by the equation 

(13) 4>(u, v) « 0, 

the Schwarzian reflection T with respect to this curve is obtained by 
solving for (U, V) the equations 

(14) 4>(U, v) = 0, 4>{u, V) = 0. 

Kasner developed the geometry in the large of the Schwarzian 
reflection T with respect to a general algebraic curve; that is, when 
<f>(u, v) is a general polynomial of degree n. In general, the degree of the 
Schwarzian reflection T is n2. In general, the image of the algebraic 
curve (13) under the Schwarzian reflection T as given by the equa­
tion (14) is not only the curve itself but also a new algebraic curve 
which Kasner termed the satellite of the given curve (13). In particu­
lar, the satellite of a conic is a confocal conic.6 

5 Kasner and DeCicco, Rational functions of a complex variable and related potential 
curves, Proc. Nat. Acad. Sci. U.S.A. vol. 32 (1946) pp. 280-282. 

8 Kasner, La satelite conforme de una curva algebraica general, Revista de la Union 
Matemâtica Argentina vol. 2 (1946) pp. 77-83. Also Algebraic curves, symmetries, 
and satellities, Proc. Nat. Acad. Sci. U.S.A. vol. 31 (1945) pp. 250-252. 
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The Schwarzian reflection T with respect to the rational harmonic 
curve (3) is 

(15) f{U)G(v) +F(v)g(U) = 0, f(u)G(V) + F(V)g(u) = 0. 

The Schwarzian reflection T with respect to a rational harmonic curve 
of degree n — lr — k, where O^gfe^r, is of degree r2. 

In order to find the satellite of the rational potential curve (3), we 
have to eliminate (u, v) from the equations (3) and (IS). I t is found 
that the result yields the equation (3) where u is replaced by U and v 
is replaced by V. 

The satellite of a rational potential curve is the original curve itself. 
These new results are exact extensions of the corresponding 

theorems developed by Kasner concerning polynomial potential 
curves, to our rational potential curves. 
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