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Introduction. Interest in N. Jacobson's result that (associative) 
rings R which satisfy 

(1) an(a) = a (n(a) an integer greater than one) 

for every aÇ£R are commutative1 [4, p. 702] led Forsythe and McCoy 
to show that every (associative) regular ring without nilpotent2 ele­
ments is a subdirect sum of division rings [3]. The principal tool they 
used was a very general theorem of G. Birkhofï on subdirect unions 
in universal algebra [l ]. In this note we shall prove the one additional 
fact which is needed to extend their argument to the alternative case. 
Our interest is not, of course, directed to the commutativity of alter­
native rings which satisfy (1), since this is an immediate consequence 
of Jacobson's result and the Theorem of Artin. In fact, such rings are 
associative. This consequence is well known if the additive order of 
no element of the ring is divisible by three. Our main result enables 
us to settle this exceptional case also. A corollary of our principal 
theorem is that every alternative algebraic algebra which has no nil-
potent elements is the subdirect sum of alternative division algebras 
(cf. [4]). Whether this fact will find its place in a general theory of 
the structure of alternative algebraic algebras remains to be seen. 

1. Preliminaries. Max Zorn calls a ring R alternative in case, for 
every a, b, cÇzR, the associator (a, b, c) ~a(bc) — (ab)c changes sign on 
interchange of two of its arguments [7, 8] . Interest in these rings cur­
rently stems from a fundamental result of R. Moufang in the founda­
tions of projective geometry [5]. I t is known to be sufficient to as­
sume that {a, a, &) = (&, a, a ) = 0 [7]. Emil Artin has proved the 
following fundamental theorem. 

THEOREM OF ARTIN. If R is an alternative ringy then the subring of 
R generated by two of its elements is an associative subring. 

In this note we shall need to use the following identities 
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1 Numbers in brackets denote the references at the end of the paper. 
2 By a nilpotent element of a ring R we mean a nonzero element aÇ^R such that 

an=0 for a positive integer ». 
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(2.1) (x(yz))x = (xy)(zx)y 

(2.2) *(y(zy)) = ((*y)z)y 

which have been established for alternative rings by Zorn [8]. 
J. von Neumann [ó] calls an (associative) ring R regular in case 

for each a £ i ? there is an x £ i ? for which axa— a. By the Theorem of 
Artin, this is a meaningful definition in alternative rings and we may 
speak henceforth of alternative regular rings. 

2. The main result. In this section we shall prove the following 
theorem. 

THEOREM. An alternative regular ring Ris a subdirect sum of alterna­
tive division rings if and only if R has no nilpotent elements. 

PROOF. An examination of the argument of Forsythe and McCoy 
will show that associativity of three elements of R which are not nec­
essarily in a subring of R generated by two elements of R is used only 
in the proof of their Lemma 2 and in this case one of the three ele­
ments is idempotent. Our theorem is, then, a direct consequence of 
the Theorem of Artin, the arguments of Forsythe and McCoy, and 
the following lemma. 

LEMMA 1. If e is an idempotent element of an alternative ring R such 
that ex = xefor every x £ i ? , then e(xy) = (ex)y = x(ye) for every x}yE:R. 

Before we prove this lemma we shall first prove the more general 
lemma. 

LEMMA 2. If x is an element of an alternative ring Rfor which xy=yx 
for every yÇzR, then xzy=yxz and xz(yz) ~(xzy)z~y(zxz) for every y, 
z<E.R. 

PROOF. Tha t xzy ~yxz for every yÇ£R is an immediate consequence 
of the Theorem of Artin. Now, using the identities (2.1) and (2.2), we 
may compute 

(yz)xz = xz(yz) = #[(#(;y2))#] = #[(#;y)0s#)] 

= [(;y#)(#z)]# — y(zxz). 

Thus (y, zf xz) = 0, and consequently all associators involving xz 

vanish. 
PROOF OF LEMMA 1. Take x~e~xz in Lemma 2. 
Remark. Lemma 2 is related to a result of R. H. Bruck [2, p. 302] 

which states that the mapping x—>xz is an endomorphism of a com­
mutative Moufang loop into its center. In our original version we 
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noted that Bruck's result is valid for alternative rings in connection 
with our proof that alternative rings which satisfy (1) are associative. 
Our thanks are due to the referee who formulated Lemma 2, which, 
as we shall see, is useful in both situations. 

3. The associativity of certain alternative rings. As we noted in the 
introduction, our main result is not needed to show that alternative 
rings which satisfy (1) are commutative. I t is well known that a com­
mutative alternative ring R is associative if 3a = 0 implies that a = 0, 
for every aG-R. In this section we shall apply our main result to show 
that every alternative ring which satisfies (1) is associative. We first 
note that such a ring is regular and without nilpotent elements. By 
our theorem, such a ring is, then, a subdirect sum of commutative 
alternative division rings each of which satisfies (1). Now, an alterna­
tive division ring which satisfies (1) necessarily has finite prime char­
acteristic (see [4, p. 702]). To prove the associativity desired it is 
sufficient to prove the following lemma. 

LEMMA 3. If Ris a commutative alternative division ring whose char­
acteristic is three and which satisfies (1), then R is associative. 

PROOF. Let a(~R and consider the subfield generated by a. This 
subfield is certainly finite since it is contained in the field 

K « [d + c2a + • • • + cn^an~2\ ch • • • , cn^2 G P3], 

where n = n(a) and P 3 = [0, 1, 2] is the prime field with three elements. 
Consequently, the field generated by a is finite and aq = a, q — S1*, with 
k a positive integer. But then a = &3, fc = ar, with r~Zh~-x and b^R. 
The ring R is, therefore, associative by Lemma 2. 

Note added in proof. (Received May 12, 1947.) R. H. Bruck has 
asked us to include the following theorem of his in our note because 
of its importance in geometric applications. Every commutative alter­
native division ring R is associative and hence afield. For, if a, &, cG-R, 
we may write (ab)c~t(a(bc)), from which azbzâ = tzazbzcz follows by 
Lemma 2. I t is well known that 3(a, &, c) = 3 ( /~ l)(a(bc))~0. If 
(a, by c) is nonzero, then 23=1 and 3(^ — 1) = 0 . But then (t — l ) 3 

= tz — 3t(t — 1) —1 = 0, £ = 1, a contradiction. This result, together with 
our theorem, provides another proof of the conclusion reached in §3. 
Irving Kaplansky has given (in conversation) still other proofs. 
Bruck^ result and our theorem also imply that every regular commu­
tative alternative ring is associative, since a regular commutative alter­
native ring has no nilpotent elements [l, p. 767]. We can then also 
show that every subdirectly irreducible commutative alternative ring 
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without nilpotent elements is a field (cf. [l , Lemma 2]), but we shall 
not do this here. 
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A NOTE ON RELATIVELY PRIME SEQUENCES 

RICHARD BELLMAN 

In volume 2 of Pólya-Szegö, Aufgaben und Lehrsâtze ans der 
Analysis, pp. 133 and 342, there occurs the following result (appearing 
also in Hardy-Wright, Theory of numbers, p. 14) : 

THEOREM 1. No two numbers of the form 2 2 n +l , w = l, 2, • • • , 
have a common divisor greater than 1. 

The numbers 2 2 n + l , w = l, 2, • • • , are the well known Fermât 
numbers, which may be generated by iteration of the quadratic poly­
nomial </)(x) = (x —1)2+1, choosing x equal to 3. This follows easily 
by induction, since, putting <£i(#) =<£(#), $n+i(x) =$W>nOxO), if 
<f>r(x) = 2 2 n + l , then <j>n+1(x) =2 2 n + 1 +l . 

The above observation leads to the following result of which 
Theorem 1 is a special case : 

THEOREM 2. Let <j>(x) be a polynomial in x with integral coefficients 
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