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1. Introduction. By the conjugating representation P of a finite 
group G of order g > l , with elements 7,-, is meant the representation 
of G by permutation matrices P(yi) such that 

(1) y^yji = P(yi)y-

Here we define the group vector y to be a g X l column vector whose 
entries are the elements of G, arranged so that the identity element 71 
is first, and so that the hff elements of a class C9 of conjugate elements 
are listed consecutively, forming a class vector y„ which is a subvector 
of the group vector y. 

From a study of two different partial decompositions of the linear 
group P and its subsequent complete reduction into irreducible com­
ponents r p , the principal theorem is obtained, which relates the multi­
plicities of the irreducible components of the direct products TpXTp 
with those of certain transitive constituents of P . Furthermore, a 
matrix T is described which completely and simultaneously reduces 
the right and left regular representations as well as the conjugating 
representation. 

2. The transitive constituents of the conjugating representation. 
The gXg permutation matrices of the right and left regular represen­
tations, respectively, are defined by right or left multiplication of the 
group vector Y by a group element 7», thus : 

(2) y?; = R{yi)y, 7*T = £ ( Y * ) Ï . 

They form transitive groups of permutation matrices, one isomorphic 
and the other anti-isomorphic with G. The matrix R(C<,)> obtained 
by summing the matrices R(yi) over a class C r, is identical with the 
corresponding matrix L(Ca). Each matrix R(y%) is permutable with 
every matrix L(yj). 

A group of permutation matrices, which we call the conjugating 
representation P of G, is defined by assigning to the group element 
yt the matrix P(7»), where 

(3) P(x<) - L(yrl)R(xi), P(ji)P<yi) - P(7«Y/). 
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The matrices P (Y») may also be defined directly by the equation (1). 
From equation (1) it is apparent that the permutation group P is 

intransitive (for g > l ) , having one transitive constituent P corre­
sponding to each of the r distinct classes Cff. In terms of the class vec­
tor y9 we define the transitive "class representation" P„ as follows: 

(4) yT^trti - PrbrOY" 
I t is well known1 tha t in any transitive permutation group of de­

gree n which is homomorphic with a given group G, there is a sub­
group leaving a specified symbol fixed, to which corresponds a 
subgroup H of index n in G, and that the given permutation group 
is equivalent to the permutation group Gu on the right cosets Hya 

of G. To yi in G corresponds the permutation Hya-^Hyayi in G#. 
If K is the largest subgroup of H which is invariant in G, then the 
permutation group GH is isomorphic with the factor group G/K. 

For the transitive class representation P „ the subgroup H is the 
normalizer Nc of a chosen element of the class C9. Since each N9 con­
tains the center C of G, each group P9 is a representation of the factor 
group G/C. I t is never a faithful (isomorphic) representation of G 
when the center contains more than one element. 

Each of the groups P9> considered as a linear group, may be com­
pletely reduced by a change of basis into the direct sum of irreducible 
linear groups. Let JJL9P be the multiplicity in P9 of the irreducible com­
ponent r p and let Ti be the identity representation. Then since P9 

is transitive, /A,I = 1. In the complete reduction of the conjugating 
representation P , if /xp is the multiplicity of the component Tp, 

r 

(5) P S ] £ VpTp> w h e r e MP = Z ) M<rP. 
P ff—i 

In particular, if the center of G contains more than one element, 
the coefficient ixp is zero for every faithful representation Tp of G, and 
for all other representations which do not represent every invariant 
element by the unit matrix. 

3. Reduction by idempotents of the group algebra. The right and 
left regular representations of the group G induce corresponding rep­
resentations of the group algebra 31 whose typical element a—^acd 
is a linear combination of group elements with coefficients from a speci­
fied field such as the field of complex numbers. I t is known2 that mat­
rices T exist which transform the group vector y into some new basis 

1 A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 3d éd., Berlin, 1937 
(Dover, New York, 1945) p. 113. 

2 A. Speiser, loc. cit. p. 178. 
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vector T^y, such that both the right and left regular representations 
are thereby completely and simultaneously reduced, and such that 
equivalent irreducible components of the right representation are ac­
tually identical with each other, and are merely transposes of the 
corresponding components in the anti-isomorphic left representation. 
The component matrices Tp(7») may further be assumed to be in uni­
tary form, and we have 

(6) r ; ( - y r 1 ) = r p ( 7 i ) . 

In both of the transformed representations the class Cff is repre­
sented by the same diagonal matrix ^ J J ( C f ) r = ^ L ( C , ) r . The r 
classes Cff of G are linearly independent in both regular representa­
tions, so these diagonal matrices must be linear combinations of r* 
idempotent matrices Ip , where r*^r. By means of the primitive di­
agonal idempotents Ip we define the blocks Rp and Lp of which the 
transformed right and left representations are respectively the direct 
sums: 

(7) RP(a) = IPT^R(a)TIp; Lp(a) = IpT~iL(a)TIp. 

Since two nonequivalent irreducible components must differ in their 
representations of at least one class C„ the irreducible components 
of the block RP(a) are all equivalent, and may each be written as the 
same Tp(a) by suitable choice of T. Equivalent to these, but written 
in the transposed form Tp (a) to produce the required anti-isomor­
phism, are the components of the left block Lp(a). Because the mat­
rices of Rp and Lp commute with each other, the multiplicity of the 
component Tp in Rp must equal the degree of Yp

f in Lp, namely np. 
Hence the diagonal idempotent Ip has n2

p l 's and defines a subspace 
of the g-dimensional vector space in which Rp(a) and Lp(a) may be 
written as direct products (in opposite orders) of a unit matrix and a 
representation matrix each of degree np : 

(8) Rp(a) = rp' (1) X Tp(a) ; Lp(a) - Tp' (a) X Tp(l). 

Using the same suitably chosen T, whose coefficients we shall de­
scribe later, we transform the conjugating representation, defining 

(9) Q(yù - T~ip(yi)T. 

From equations (9), (3), (7), (8), and (6), it then follows that the block 
Qp of Q defined by the idempotent Ip has the form 

(10) QP(yi) = lPQ(yi)lP = r p ( 7 t ) X r p (T i ) , 

and is thus the direct product of the two conjugate imaginary irre-
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ducible representations Tfi and Tp of the group G. Consequently the 
multiplicity of any irreducible representation as a component of the 
conjugating representation P is the sum of its multiplicities in the r* 
direct products r p x r p . 

4. The balancing of multiplicities. Combining the result of §§2 and 
3 we obtain our principal theorem: 

THEOREM 1. The sum of the multiplicities of a given irreducible repre­
sentation Tp as a component in the direct products FTXrT is equal to the 
sum of its multiplicities in the transitive class representations P0 (per­
mutations on cosets with respect to a normalizer). 

Applying Theorem 1 to the component Ti which occurs just once 
in each TV X Tr and P „ we obtain the following well known result. 

COROLLARY 1. The number of nonequivalent irreducible representa­
tions of a finite group is equal to the number of its classes. 

To illustrate Theorem 1, we give below the two decompositions of 
the conjugating representation of the symmetric group of order 24. 
This group has five nonequivalent irreducible representations, of de­
grees Wp = l, 1, 3, 3, 2, respectively, and five class representations Pffi 

of degrees &„ = !, 3, 8, 6, 6, respectively. The decomposition of each 

j rTxrT 
T: 1 2 3 4 5 
n2

T: 1 1 9 9 4 

IV 1 1 1 1 1 
r2: i 
r3: i i 
T4: 1 1 
r6: 1 1 1 

p 

g = 24 

Mi = 5 
M 2 = l 

| M3 = 2 

M4 = 2 

P. 
a: 1 2 3 4 5 
*,: 1 3 8 6 6 

1 1 1 1 1 
1 
1 1 
1 1 

1 ' ' ' 1 Table of multiplicities 

of the five direct products TT X TT is given in one of the left-hand col­
umns, tha t of the conjugating representation P in the center column, 
and those of the class representations P„ in the right-hand columns. 

From Theorem 1 and the discussion of §2, we obtain also the fol­
lowing theorem. 

THEOREM 2. If V is an irreducible representation of a finite group G 
whose center C contains more than one element, then each irreducible 
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component of TXT is a representation of G/C, and is not a faithful 
(isomorphic) representation of G. 

One illustration of Theorem 2 is afforded by considering a repre­
sentation T of the quaternion group which is irreducible over the 
field of complex numbers. Since the center C contains two elements, 
no component of TXT is a faithful representation of the quaternion 
group. Similarly let us consider a group G which is represented faith­
fully by a group T of unitary symplectic matrices, irreducible over 
the field of complex numbers. Weyl8 applies the term symplectic to 
matrices of degree n = 2v having an alternating bilinear invariant. In 
terms of real ^-dimensional matrices A,ByC,D and the corresponding 
unit matrix J such unitary symplectic matrices Mn and their invari­
ant j may be written in the form 

/ A+SiC+D* / OA 

\-C + Di A -Bi) \ - J 0/ 

This is equivalent to a set of ^-dimensional matrices Mv—A +Bi+Cj 
+Dij having quaternion coefficients, and such that the inverse matrix 
is the transposed quaternion conjugate A' — B'i—C'j—D'ij. The 
group T is equivalent to T. The existence in G of an invariant element 
of order 2 implies by Theorem 2 that T X T is not a faithful representa­
tion of G. 

5. The reducing transformation. It is known that a linear trans­
formation with matrix T exists which completely reduces the right 
and left regular representations.2 It is possible to find all such reduc­
ing matrices T in a fairly straightforward manner by making use of 
the conjugating representation. 

We first define a gXg "entry matrix" Z=*||Z</|| by assigning to the 
ith row in a specified order the g=]Cwp linearly independent entries 
(or coefficients) for the group element ji in a complete set of r non-
equivalent irreducible unitary representations Tp. It is best to order 
these g entries first by representations Tp (Ti leading), then by rows 
within the particular wp-dimensional matrix of 1%, and finally by col­
umns in Tp. The ordering of rows in Z shall be that of the group vec­
tor y. 

Then the matrix P(yi)Z is a matrix similar to Z but with each 
group element which defines a row in Z replaced by its transform 
under yit so that the rows of the matrix Z are permuted by P(yi). 
The same reordering of the coefficients of Z could have been ob­
tained by postmultiplying Z by the matrix Q(yi) of (9), which is 

» H. Weyl, The classical groups, Princeton, 1939, p. 165 ff. 
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partially decomposed according to the idempotents Jp. For ZIP is a 
rectangular matrix of g rows and n* columns, whose coefficients are 
transformed by a direct product matrixTp(yi) XTp(yi) applied on the 
right just as if each individual group element were transformed by 7»-. 
Hence using (9), we have 

(12) P(y<)Z = ZQ(yi) = ZT-*P(yi) T. 

A similar argument shows that R(yi)ZIp and L(yi)ZIp are matrices 
like ZIP in which the coefficients corresponding to the group element 
Y,- are replaced by those of 7/y» or of 7*7/ respectively. This however 
is the same as either ZIpRp(yi) or ZIpLp(yi), where Rp and Lp are de­
fined in (7). Summing over p we have 

(13) R(7i)Z = ZT-iR(yi)T; L(yt)Z - ZT^L(7i)T. 

Writing T = ZV in (12) and (13) we see that the nonsingular matrix V 
permutes with each of the matrices T"lR(yi)T and T~lL(yi)T and 
their product Q(yi). Thus, 

F[r-*R(7<)r] = V{ZV)^R{y%)ZV - V(ZV)~lZT~lR(yx)TV 

ft4) - [T-lR<yi)T]V, 

V[T-~iL(yi)T] - T-*L(yi)TV, 

VQ(y<) - Q(yi)V. 

These relations (14) are possible for all 7» if and only if V lies in 
the intersection of the commutators of T~lR{a)T and T"1L(a)T. 
Hence F is a nonsingular linear combination of the idempotents Jp. 

Now the well known orthogonality relations for the coefficients in 
the irreducible group representations imply that 

(15) Z'Z = E (*/»,)!,. 
P 

I t follows that the matrix T=*ZV will be unitary if and only if 

(16) V = X <*>p(np/g)in Ip^ where wpwp = 1. 
p 

A convenient choice is to take cop = 1. 

THEOREM 3. A unitary matrix T which completely reduces the right 
and left representations and the conjugating representation may be 
formed by multiplying each element of the entry matrix Z described above 
by the appropriate f actor (wp/g)1/2, where np is the degree of the irreduci­
ble representation associated with the particular column of Z. 

MICHIGAN STATE COLLEGE 


