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Introduction. If one at tempts to make a systematic study of alge­
bras with nonzero radical one soon realizes that the main difficulty 
is that of singling out a set of structural characteristics which could 
constitute a suitable center of interest in a general theory. In the 
study of simple and semisimple algebras, the full matrix algebras over 
the groundfield serve as models for the "perfect" structure, and the 
greatest departure from this which one has to consider consists in the 
ground field being replaced by a division algebra. On the other hand, 
even among the nilpotent algebras, it would be difficult to decide 
what type is to be regarded as representing the "perfect" structure. 

The first type that one might think of in this connection is the fol­
lowing: There is a single element, x, with x n + 1 = 0, for some positive 
integer n, whose powers x, x2, • • • , xn constitute a linear basis for 
the algebra. However, this is evidently far too special a type to serve 
as a standard. A natural generalization of this, which turns out to be 
more suitable, is obtained by replacing the one-dimensional subspace, 
(x), by a subspace of arbitrary dimension. With suitable additional 
requirements in the case of non-nilpotent algebras, we are led to the 
notion of a "quasicyclic" algebra whose radical has a considerably 
more transparent structure than a general nilpotent algebra. 

We also introduce a more restrictive notion, tha t of a "maximal" 
algebra, and it will be shown that every algebra whose quotient by 
the radical is separable or {o} is the homomorphic image of a "re­
lated" maximal (quasicyclic) algebra. Since the structure of maximal 
algebras is determined completely by separable algebras and their 
representations our structure theory decomposes into two parts : The 
study of two-sided ideals contained in the radical of a maximal alge­
bra, and the study of separable algebras and their representations. 

Throughout this paper we shall deal only with algebras whose quo­
tients by the radical are either {o} or separable. In particular, this 
will be the case for all algebras over a perfect field. I t is to be noted 
that in this approach there is no need for a general representation 
theory of non-semisimple algebras. 

1. Related algebras. We consider algebras 5 , with radical R, such 
that B/R is separable or {o}. Two such algebras, Bi and B2, are said 
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to be related if : 
(1) B1/R

2
l~B2/Rl 

(2) The indices of nilpotency of Ri and R2 are the same. 
By the index of nilpotency of a nilpotent algebra, R, we shall mean 
the least non-negative integer k for which Rk+1 = {0}. 

By Wedderburn's structure theorem,1 we know that B contains a 
subalgebra, A, which is mapped isomorphically onto B/R by the nat­
ural homomorphism of B onto B/R. Then—as a vector space—B is 
the direct sum of A and i?, and for any such decomposition the multi­
plication in B induces the structure of a two-sided I?/i<!-module2 in B. 
Moreover, R2 is a submodule of i?, and the induced B/R-module 
structure in R/R2 is determined uniquely by B, or even by B/R2. 
Related algebras determine isomorphic modules R/R2. If we denote 
by T a model for the A -module R/R2 and write the linear transforma­
tions in T which correspond to an element a£.4 as t—^a-t and t—^t-a, 
we obtain a model for B/R2 whose underlying vector space is the di­
rect sum (A, T) oî A and T, and where multiplication is defined by 
the formula 

(ai, h)(a2, t2) = (aia2, ai't2+h-a2). 

For, if d is an operator isomorphism of T onto R/R2, the mapping 
(a, t)—»â+cr{/}, where a is the coset mod R2 of a in B/R2, is evidently 
an isomorphism of this algebra onto B/R2. 

Later, we shall construct a maximal algebra related to B of which B 
is a homomorphic image by suitably "enlarging" the radical (0, T) 
of this algebra. For this construction we require a few auxiliary no­
tions and a decomposition theorem for two-sided modules. These will 
be given in the next two sections. 

2. A -modules. Let A be an algebra over the field F, T a vector 
space over F. Let a* be a homomorphism of A into the algebra of lin­
ear transformations of T, <r* an antihomomorphism of A into this 
algebra. If, for all a* £-4 , we have a {a±} a* {a2} = <r* {a2} cr {a,\} we say 
that the set {A, T, o-, o**), or, simply, T is a (two-sided) A -module. 
If we write (cr{a}){/} —a-t, (ö**{a}){/} =/ -a , we may express our 
conditions by saying tha t the • operations satisfy all the formal re­
quirements for a multiplication. We define submodules and quotient 
modules in the usual manner. A module M is said to be semisimple if 
to every submodule K we can find a complementary submodule L 
such that M is the direct sum of K and L. M is called simple if {0} 

1 See, for instance, N. Jacobson, The theory of rings, Mathematical Surveys, vol. 2, 
chap. 5, §20. 

2 Cf. §2 of this paper. 
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and M are its only submodules. We shall require the following theo­
rem: 

THEOREM 2.1. If A is separable then every two-sided A-module is 
semisimple. 

This is an easy generalization of the well known corresponding theo­
rem concerning semisimple algebras and their representations, that is, 
their left modules.3 In fact, denote by A* the algebra obtained by ad­
joining a new identity element, 1, to A. Let e be the identity element 
of A. Then we have (l-e)A = {o} =A(l-e), and ( l - e ) 2 = l - e , 
whence we see that A* is the direct sum of A and the ground field F. 
Hence A* is separable. Now let A* be the algebra inversely isomorphic 
with A*. Then A* is evidently separable also, and hence, by well 
known results,4 the Kronecker product A*XÂ* is separable, or, in 
particular, semisimple. Hence every left ^4*X^4*-module is semi-
simple. Now if M is any A -module we can define in M the structure 
of a left A*XA* module by setting l -w = m = w - l , for every mÇzM, 
and (a*Xâ2*) •w = ö*-m-a2*. The statement that this left A*XÂ*-
module is semisimple is then evidently equivalent to the statement 
that the given two sided A -module M is semisimple. (Because of 
the 1, there is a 1-1 correspondence between two-sided submodules 
and one-sided submodules of M.) 

3. Remarks on Kronecker products. I t will be convenient to review 
some basic facts concerning Kronecker products of vector spaces. 
Let Lif • • • , Ln be a set of (finite-dimensional) vector spaces over 
a field F. We denote by M(Lx, • • • , Ln) the vector space formed 
by the w-linear functions on the direct sum of these spaces, that 
is, by the functions ƒ mapping (Li, • • • , Ln) into F in such a way 
that ƒ is linear on each Li when the coordinates in the remaining 
Lj are kept fixed. By the Kronecker product, L%X • • • XLn, of the Li 
is meant the vector space dual to M(Li, • • • , Z,w), that is, the vec­
tor space whose elements are the linear mappings of M(Li> • • • , Ln) 
into F. If (21, • • • , 2 n )G( i i , • • • , Ln) we obtain an element 
ZiX • • • Xzn in L iX • • • XLn by setting (ziX • • • X*n) {ƒ} 
=/{si , • • • , z n } , for every /E-&f(Li, • • • , Ln). Evidently, the 
mapping (zi, • • • , zn)—>ZiX • • • Xzn is w-linear. Moreover, the 
images ZiX • • • Xzn span LiX • • • XLn over F. I t follows that the 
mapping (*iX • • • Xzk, zk+iX • • • Xzi)—>ziX • • • Xzi induces a bi­
linear mapping of (LiX • • XLk,Lk+iX • • • X£i ) in toLiX * * • X i i . 

3 N. Jacobson, loc. cit. chap. 4, §12. 
4 See van der Waerden, Moderne Algebra, 1st éd., vol. 2, §119. 
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Moreover, this mapping is distributive. If w £ L i X • • • XLk, and 
fl£I<fc+iX • • • XLi, we shall denote the image of (u, v) under the 
above mapping by uXv. Then it is easy to see that (uXv)Xw 
= uX(vXw). Thus the mapping (w, v)—>uXv behaves like a multipli­
cation. Indeed, we shall use this operation later in order to define a 
multiplication in a vector space which is the direct sum of Kronecker 
products. 

4. Maximal related extensions and quasicyclic algebras. Let B be 
an algebra, R the radical of B. We say that B is quasicyclic if the fol­
lowing conditions are satisfied: 

(1) B contains a subalgebra A which is mapped isomorphically 
onto B/R by the natural homomorphism of B onto B/R, so that R 
becomes an A -module in the natural fashion. 

(2) R, as an A -module (two-sided), admits of a direct decomposi­
tion into submodules i?i, • • • , i?«, where Rk is the ordinary feth 
power of JRI, and n is the index of nilpotency of R. 

If B is an algebra and j8 is a homomorphism of B onto an algebra A, 
the pair (J3, /3) is called an extension of A. (J3, /3) is called a related 
extension of A if B and A are related. A is called maximal if, in every 
related extension (J3, /3) of A, /3 is an isomorphism. A related extension 
(Bf j8) of A is called maximal if B is maximal. 

Our main result is the following: 

THEOREM 4.1. Let B be an algebra with radical R such that B/R is 
separable or {o}. Then there exists a maximal related extension (C, 7) 
of B, such that C is quasicyclic. If (d, 7») is a maximal related extension 
of Bi, i = 1, 2, and if B\ and B% are related, then & and C2 are isomorphic. 

PROOF. Let A be a subalgebra of B which is mapped isomorphically 
onto B/R by the natural homomorphism of B onto B/R. Now con­
sider the A -module i?, and the submodule R2. By Theorem 2.1, there 
exists a complementary submodule T such that i?, as an A -module, 
is the direct sum of T and R2. Let n be the least integer k such that 
#*+i={o}.(We may assume n ̂  1.) We form the Kronecker products 
T(k) of T by itself k times, fe = l, • • • , n. We can make each Tw 

into an A -module by setting a-(hX - • • Xtk)=ahX • • • Xtk, and 
(hX - • • Xtk)'a = hX • • • Xha, where ah and tua stand for the 
products in J5, which lie in T, by our construction of T. We consider 
the direct sum, S, of these T^K There is a unique linear mapping a 
of 5 into R such that c{/ iX • • • Xtk\ =/i • • • tk* Evidently, a is an 
operator homomorphism of the ,4-module 5 onto the A -module R. 
The fact that <r is onto follows from the fact that every rÇLR can be 
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written as a sum of products of elements in T. Now we make 5 into 
a nilpotent algebra related to R by means of the Kronecker multi­
plication discussed in §3. More precisely, for SkiGT^kl) and Sk2&T^k2\ 
we set Ski *Sk2

=:Sk1XSk2y when ki+k2^n, and 0 otherwise. Then a 
is evidently a homomorphism of the algebra 5 onto the algebra R. 
This still requires modification : 

Let U2 be the subspace of !T(2) which is spanned by the elements of 
the form haXh —t\Xafo, with aÇ^A, t\, t2ÇzT. If Uk is already defined 
as a subspace of Tw we define Uk+i as the subspace of r(Aj+1) which 
is spanned by TXUk and UkXT. Evidently, each Uk is a submodule 
of T(fc), and is contained in the kernel of o\ Now we can choose a sub-
module Vk of r (A° which is complementary to Uk» Denote the pro­
jection of r<*> onto Vk by TT*. Write T = Vh and let E = Vi+ • • • + Vn 

(this sum is direct). We define a multiplication in E by setting, for 
ZkGVk, Zi o z3-=Wi+j{ziXzj}, when i+j^n, and 0 otherwise. This 
is evidently bilinear. Moreover, since Tri+j{ziXzj} Xzk — ZiXirj+k 
• {zjXZk} ÇzUi+i+k when i+j+k^n, we have always (zi o z,) o 3& 
= 2» o (ZJ o Zk). Thus £ has the structure of a nilpotent algebra. The 
mapping <r induces a homomorphism of the algebra E onto the al­
gebra R; in fact, <r{zi o Zj} —<r{zi*Zj}. Since the index of nilpo-
tency of E is not greater than n, by construction, and since o"{En} 
= Rn, it follows that the index of nilpotency of E is exactly n. Evi­
dently, E/E2 « T^R/R2

y whence E is related to R. Finally, a induces 
an operator homomorphism of the A -module E onto the A -module R. 

Now we construct an algebra, C, out of the direct sum (A, E) of 
the vector spaces of A and E by setting 

(fli, 0i)(tf2, e2) = (aitf2, 01-02 + 01*02 + 0i o e2). 

Since E is an .4-module and since, evidently, a- (ei o e2) = (a-ei) o e2f 

and (ei o e2) -a = 0i o (02*&), the associativity condition reduces to 
(01-a) o 62 = 01 o (a-e2). This is satisfied in virtue of our definitions 
for the Uk and 7rfc. If we define T { (a, e)} =a+<r{e}, we see immedi­
ately that 7 is a homomorphism of C onto B. Moreover, 7 induces 
an isomorphism of C/E2 « (A, T) onto B/R2. Hence C is related to B. 
Evidently, C is quasicyclic. For convenience of reference, let us call 
a related extension (C, 7) of B, which is obtained by a construction 
such as we have just described, a standard related extension of B. 

Now let Bi and B2 be any two related algebras with radicals Ri 
and JR2, respectively. Let p be an isomorphism of Bi/R\ onto B2/Rl-
Let (Ci, 71) and (C2j 72) be standard related extensions of B\ and B2l 

respectively. We wish to show that Ci and C2 are isomorphic : 
We have, in a notation paralleling the above, Bi = (Ai, Ri), and 
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Ci —(Ai, Ei)y where Ai is a subalgebra of Bi which is mapped iso-
morphically onto Bi/Ri by the natural homomorphism of Bi onto 
Bi/Ri. Since Ai^Bi/Ri, p induces an isomorphism X of Ai onto Ai 
and an isomorphism ju of Ti^Ri/Rl onto T^^R^/lQ. For a£ .4 i , / £ JTI, 
we shall have /i(a/) — X(a)/i(/) E E j a n d l*(ta) —ix(t)\(a)£Ê2> whence 
/z(a£) =\(a)fx(t) and ju(to) =/z(/)X(a). Evidently, JU may be extended in 
a unique fashion to a linear isomorphism jl of (7\, • • • , r{n)) onto 
(r2 , • • • , r2<»>), such that, for ^ G T i , 

£(*i X • • • X **) = 11(h) X • • • X ix(tk). 

Clearly, ju maps each Uk,i onto 27fc,2, where the Uh,% are the subspaces 
of the T?\ defined as were the Uh in our construction above. I t fol­
lows that A induces an isomorphism p, of E\ onto E2, such tha t 
/z(s) —fi(z) G £7*,2, for sG^i**. From this and the above it follows that 
p(a'e)—\(a)'p(e), and #(e-a) =/z(e)-X(a), for all e £ E i and a £ i 4 i . 
Finally, the mapping (a, 6)—>(X(a), /z(e)) is evidently an isomorphism 
of G onto C2. 

Now let (C, 7) be a standard extension of 5 . Let (D, S) be any 
related extension of C, and construct a standard related extension 
(C*, 7*) of P . Then, since D and 5 are related, it follows from what 
we have just proved that C* is isomorphic with C. Hence the homo­
morphism Ô7* of C* onto C must be an isomorphism. A fortiori, S is 
an isomorphism. Hence C is maximal. This completes the proof of 
our theorem. 

We obtain immediately the following corollary : 

COROLLARY. Every maximal algebra is quasicyclic. 

5. Some illustrative remarks. I t is interesting that some algebras 
whose structure one would regard as nondegenerate on purely intui­
tive grounds are, indeed, quasicyclic or even maximal. Thus, the alge­
bra formed by all n by n matrices with zero coordinates above the 
main diagonal is maximal. The nilpotent algebra of matrices with zero 
coordinates on and above the main diagonal is quasicyclic, though 
evidently not maximal. 

A simple example of an algebra which is not quasicyclic is the fol­
lowing : Let N be the maximal nilpotent algebra generated by an ele­
ment x with #7 = 0, such that the set of powers (x, x2, • • • , x6) forms 
a linear basis for N. Let Z be the subalgebra generated by x2 and xz. 
Then Z has a linear basis (x2, xz> x4, x5, x6), Z2 has a basis (x4, x5, x6), 
while Z3 is the one-dimensional vector space spanned by x6. If 
Z = Z i + Z i + Z ? were a quasicyclic decomposition of Z, then Z\ would 
have to contain an element of the form xz+ax4+px5+yx*. Then Z\ 
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would contains6 , that is, Z?Z>Z3, which gives a contradiction. Hence 
Z is not quasicyclic. 

6. An application. We shall apply the above methods to a particu­
larly simple case in which a complete result can be obtained. 

Let B be an algebra over the field F, and let R be the radical of B. 
We consider the case in which B/R is a central simple algebra over F, 
that is, B/R is a full matrix ring of degree d (say) with coordinates in 
a division algebra $ over F, such that F is the center of <Ê>. Then there 
exists a subalgebra A of B which is mapped isomorphically onto 
B/R by the natural homomorphism of B onto B/R, and R is a two-
sided A -module in the natural fashion. In addition to the above we 
shall assume that the quotient module R/R2 is simple, and that it is 
not annihilated by A on either side. (This implies, in particular, that 
the identity element of A acts as the identity transformation in R/R2, 
both on the right and on the left.) Let A be the algebra anti-isomor-
phic with A, Then, by well known results,5 A XÂ is simple (in fact, 
it is a full matrix algebra over F), and, as in the proof of Theorem 2.1, 
we may regard R/R2 as a nontrivial simple left A X A -module. Now 
the algebra A itself may be regarded in the natural way as such a 
simple left A XÂ module, and since any two nontrivial simple left 
modules for a simple algebra are isomorphic, we may conclude tha t 
there exists an isomorphism X of R/R2 onto A (as a vector space 
over JF) such that \{a- f\ =d\{f}, and X{f -a} =X{r}a, for every 
aÇ^A, and every r(E.R/R2. Therefore, in constructing a maximal re­
lated extension of B we may take for the space T of §4 a copy, A(1), 
of A, and we shall have #i • cip = (01Ö2)(1) ; ($* • #i = (ctvfli) ( 1\ where we 
indicate by a—>a(1) a fixed isomorphism of A onto -4 (1). 

Next, we shall have to compute the subspace V% of TXT. For this 
purpose, we may as well use the isomorphic space AXA; U2 will be 
the subspace of A(1) X-4 (1) which corresponds to the subspace JJ{ of 
AXA spanned by all elements of the form aia2Xa3 —aiX02a3. ^ o r a 

moment, it will be convenient to identify A with <ï>d, and to intro­
duce the usual matrix units e^; 1 ^ (i, j) ^d. Thus, each element of A 
may be written a=X)**.?0<A7» with 0»,-£4>, and we have ($eij)(<t>repg) 
= ôjjtfxp'eiq, where ô]p stands for the usual Kronecker symbol. Now we 
have 

For j = r and Sy^p this gives ei8Xepqy and for j = r and s~p we get 
eiSXesq — eirXerq. I t follows that every element of A XA is congruent 

6 N. Jacobson, loc. cit. chap. 5, §13. 
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mod Ui to a sum of elements of the form <t>enX<t>reij. Furthermore, 
Ui contains all elements of the form 

4>i4>2Cn X foeij — <t>ien X fafaeij. 

Take <£i =<£<£', 02= OA')"*1» 03 = 0 ' ; then we see that Ui contains 
<l>eiiX<t>'ei3'—(t)<l>'eaXeij. Hence every element of 4 X 4 is congruent 
mod Ui to a sum of elements of the form 0e»i Xeiy. 

Now consider the mapping aiX#2—XLia .̂ This induces a bilinear 
mapping of A XA into A which evidently annihilates Ui. Hence, 
if X)».^*Je*iXci,-Gt^2 , it follows that 2»\J0»J6*J = O,

 t n a t *s> 0*7 ^O* 
Therefore, the above mapping induces an isomorphism of 4 XA/Ui 
o n t o 4 . Since (foaXeu) '<j>fepq=<j)eiiX<l>'eijevq^<t)<t>feiiXeijepq(Ui)> 
and similar relations hold for the left operations, this isomorphism is 
actually an operator isomorphism. Therefore, we may identify V2 
(cf. §4) with a copy, 4 ( 2 ) , of 4 , with the same relations as we had 
obtained above for T and A(1). Almost identical computations show 
that each Vk may be identified with a copy A(Ar) of A, 

I t follows that, if (C, 7) is a maximal related extension of J5, C is iso­
morphic with the algebra obtained as follows: Let A(0), A(1), • • ' , 4 ( n ) 

be (n + 1) copies of A, where n is the index of nilpotency of R. Define 
a^ o a ^ = (aiû^) ( r+*\ for r + s _ ^ , and 0 otherwise, and extend this 
by linearity to give the structure of an algebra over the direct sum 
of the vector spaces, Aw

} • • • , 4 ( n ) . (Evidently, the radical of C is 
4CD+ . . . +A<n\ and we have Aw = (A^)k.) A still simpler de­
scription of this algebra, C, is obtained by noting that C can be ob­
tained from the polynomial ring A [x] by dividing out the two-sided 
ideal generated by #w+1. 

Now let / be any nonzero two-sided ideal which is contained in 
the radical 4 ( 1 ) + • • • • +Ain). Then the projections I(k) of I onto 
the A(A0 are evidently submodules of the A -module A(1) + • • • +A(n). 
Let k0 be the least k for which J ( f c )?^{o}. Since Aiko) is a simple 
module we must have /(*o)=ii(*o). Now 4 ( ^ o ) 0 p o ) c j . But 
4̂(n-&<>) o /(*o)=>4(n)# Hence we have I~DA^n). We may now consider 

I/A(n) in C /4 ( w ) and conclude that I^>A (n~*1), unless ko = n, and so on. 
Finally, we conclude that 1 = 4 (/fco)+ • • • +A(n). But this shows that 
the homomorphism 7 of C onto B must be an isomorphism, for other­
wise we could take for I the kernel of 7 and conclude that B « C/A(fco), 
which contradicts the assumption that the index of nilpotency of R 
is n. Hence every algebra such as B is maximal and has the same sim­
ple structure as the algebra C which we have constructed. 

In the general case, it is not difficult to construct the maximal alge­
bras, starting from a decomposition of the A -module R/R2 into a di-
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rect sum of simple submodules. The real difficulties are met in the 
at tempt to enumerate the two-sided ideals which are contained in the 
radical. 

HARVARD UNIVERSITY 

ON A CONJECTURE ABOUT INFINITE CLASS FIELDS 

GEORGE WHAPLES 

If we are given any algebraic extension field, of finite degree, of a 
given ground field, then the £-adic completion of the extension field, 
under any one of its valuations1 (prime spots) is an algebraic extension 
of the completion of the ground field under the same valuation. Our 
original extension field (in the large) thus determines a set of algebraic 
extensions of £-adic ground fields. We shall refer to these extensions 
as the local components of the original field. If our extension field (in 
the large) is normal, then any two valuations of the extension field 
which induce the same valuation in the ground field determine iso­
morphic local components ; hence in case of a normal extension field 
we can think of a local component as determined by a valuation of the 
ground field. 

When our extension field is not of finite degree we must modify this 
definition, since the £-adic closure of such an extension field will in 
general not be algebraic over the ground field.2 For a normal extension 
of infinite degree we define the local component as follows : The origi­
nal extension is the splitting field3 of a certain set of polynomials 
with coefficients in the ground field. Define the local component to 
be the splitting field of this same set of polynomials over the £-adic 
extension of the ground field. I t is easy to show that this field is in­
dependent of the set of polynomials used (indeed, one could use the 
set of all polynomials of the ground field which split in the extension 

Received by the editors August 12,1946, and, in revised form, November 13, 1946. 
1 For theory of valuations, see E. Artin and G. Whaples, Axiomatic characterization 

of fields by the product formula f or valuations, Bull. Amer. Math. Soc. vol. 51 (1945) 
pp. 469-492, and the literature cited there. 

2 See Ostrowski, Über einige Fragen der allgemeine Körpertheorie, Journal für Math-
ematik vol. 143 (1914) pp. 225-284. I am indebted to the referee for a correction of 
the first version of this paper and for this reference. 

3 The splitting field is the smallest subfield of the algebraic closure in which all the 
given polynomials split into linear factors. 


