ON NORLUND SUMMABILITY OF RANDOM VARIABLES
TO ZERO

GEORGE E. FORSYTHE

1. Introduction. In a previous paper! [1], the author considered
the Cesiro summability methods {C,} (0<7< ) for sequences of
independent, real-valued random variables {x:}. For summability in
probability of {x:} to 0, it was shown that: (i) <s implies C,CCy;
(ii) for =1 all the methods C, are essentially equivalent, in contrast
to the Cesaro theory for sequences of real numbers. The field of the
investigation reported here is the summability in probability of se-
quences {x;} to 0 by the Nérlund summability methods, which in-
clude the Cesaro methods. The objective (attained only in special
cases) was to prove that if two Nérlund methods N, and N, share the
relation N,C N, over sequences of real numbers, then the analogous
relation N,C N, holds for the summability of sequences of independ-
ent, real-valued, symmetric random variables to zero. The converse
is, of course, false.

The only sequences {x:} considered here are normal families of
independent, real-valued, symmetric random variables. For these
{x1} the objective has been attained for three special cases; see Theo-
rems 4, 5, and 6. The earlier theorems are tools: Theorem 1 gives a
necessary and sufficient condition for the Nérlund summability of
{x:} to 0, while Theorems 2 and 3 give sufficient conditions for the
relations N,C N, and N,= N, respectively. Theorem 7 shows that
equivalence with C; over {x:} extends to a Nérlund method N,
whose counterpart N, is strictly weaker than C; over sequences of
real numbers. Such equivalence with C; is impossible for Cesaro meth-
ods weaker than Ci over sequences of real numbers.

It is conjectured that Theorems 4, 5, and 6, here proved for normal
families only, can be extended without change of statement to arbi-
trary sequences of independent, real-valued, symmetric random vari-
ables. If the x; are not symmetric there are complications (see [1]),

but it is conjectured that Theorems 4, 5, and 6 still hold without
essential change.

2. N6rlund summability of sequences of real numbers. Let p = { pa}
(n=0, 1, 2, - - - ) be a sequence of nonnegative real numbers, with
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po=1; for each n let P, =Z’.§pk. For any sequence {xk} of real num-
bers, a transformed sequence {y,} is defined by the relation
y,.=P,.—121‘_0p,,_kxk (n=0,1, 2, - - - ). If the sequence {y,,} has the
limit %', the sequence {xk} is said to be summable-IN, to x’, where
N, is the Norlund summability method corresponding to p. The
method N, is known to be regular (that is, consistent with ordinary
convergence, for all convergent sequences {xk}) if and only if
pn=0(P,). There is a substantial known theory of the Nérlund sum-
mability methods (see [2, 6, 7, 8, 9]), of which certain results will be
quoted in this section for comparison with their analogues for se-
quences of random variables.

For two summability methods 4 and B, the statement “4 CB”
means that any sequence summable-4 to a finite limit is also sum-
mable-B to the same limit. The statement “4 =B” means that ACB
and BCA. The negation of “ACB” is “A{B.”

In addition to N,, defined by {p:}, let a second Nérlund summa-
bility method N, be defined by {g:}, with go=1, ¢x=0, and
Q.= _ngx. The following generating functions and coefficients are
defined formally by M. Riesz [7]:

P = 20 paxm g¥(%) = D gaa™;

oy T@ X,
M) = = Exnx ;
p¥(x) = () = Eﬂn*x"-

q*(x) n=0

It is assumed in (2-1) to (2-5) that N, and N, are both regular.

(2-1) (M. Riesz [7]) N,CN, if and only if, as n— o, both
S 0P| NEi| =0(Q.) and N*=0(Q.).

(2-2) (M. Riesz [7]) N,=N,if and only if > s o([N¥| + | p¥]) < 0.

The Cesaro summability methods C, (0 <7< «) are of the Nérlund
type N,, where p*(x) =(1—x)~". If we let N, be Ci, (2-2) takes the
following form ([2], p. 782):

(2-3) CiCN, if and only if, as n— =, Z’,‘_o(n+1—k)|gk—qk_1l
=0(Q.), where ¢_1=0.

It follows immediately from (2-3) that:
(2-4) If go=qus1 for all n, then C,CN,.
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It follows from (2-1) that:
(2-5) If pn=pnia for all n, then N,CCr.

The author has not seen (2-5) in the literature, but it is undoubt-
edly known. It can be proved much like the analogous Theorem 6
of the next section.

3. Norlund summability of random variables to zero. Sections 3
and 4 of [1] contain the notation, basic definitions, and references
for the summability in probability of a sequence {x:} to 0. We shall
here confine ourselves to sequences of independent, real-valued, sym-
metric random variables which form a normal family.

DEFiNITION 1 (P. Lévy [8]). {x:} forms a normal family when both
(3-1) and (3-2) hold:

(3-1) E(xx) =0 and E(x}) =03 < «, for all k;

(3-2) There exists a random variable x with finite E(x%) such that for
all A>0 and oll k

Prob { | x| > 40} < Prob {| x| > 4}.

(Lévy does not require that E(xz) =0.)

DEFINITION 2. With the notation of §2 above, a sequence {x:} is
said to be summable-N, in probability to 0 when for each ¢>0, as
n—row,

n

P:]. Z Pn——kxk

k=0

(3-3) Prob { > e} — 0.

The words “in probability” will sometimes be omitted for brevity.
The basic theorem is the following:

THEOREM 1. {xk} is a normal family of independent, real-valued,
symmetric random variables. In order that {xi} be summable-N, in
probability to 0, it is necessary and sufficient that, as n— o,

(3-4) > pa_sor = o(Ph).
k=0

Theorem 1 follows immediately from Theorem 5.3 of [1] by letting
Pn_tPil=anr. The proof of Theorem 5.3 in [1] did not depend on
the special character of ||a.|| as a Cesiro matrix.

The basic tools of the present investigation are Theorems 2 and 3,
which are analogues of (2-1) and (2-2). In the following, regularity
of N, for sequences of real numbers is not assumed unless explicitly
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stated. It is assumed always that $,=0, ¢.20, po=go=1.
Let the following generating functions and coefficients be defined
formally:

p(x) = Zo;ﬁix"; g(x) = X%qf.x";
A) = Q(x) R W —@ 3

THEOREM 2. Statements (3-5) and (3-6) together form a sufficient con-
dition for N, N, with respect to the summability in probability of nor-
mal families of independent, real-valued, symmetric random variables
to O:

(3-5) z": Pi| M| = 0(Q);

ka0
(3-6) e = 0(00).

ProoF. Let {x} be any normal family of independent, real-valued,
symmetric random variables which is summable-N, to 0. Suppose
(3-5) and (3-6) hold. Let ti=Pi® ;. opdaos (=0,1,2,---). By
Theorem 1, {f:} is a null-sequence of non-negative numbers. Let
Un=Qi D> 20q210% (n=0,1,2, - - - ). To prove Theorem 2 it is suffi-
cient to show that {#,} is also a null-sequence and apply Theorem 1
again.

Define o(x) as ) s o0%x*, formally. Now £,P2=> %_,p.2 102, by defi-
nition of f,. Hence o(x)p(x) = D motnP2x". Similarly, o(x)q(x)
=Y 2 u.Q%" But a(x)g(x) = [o(x)p(x) ]\ (x). Hence, by equating
coefficients, we see that we may write #,= s_obausls, where
bk =Q:2P2\,_i. The sequence {u,,} is seen to be obtained as the
transform of {#:} by the triangular matrix ||b.4|. To prove Theorem 2
it suffices to show that ||b.i|| is null-preserving. By a theorem of
Kojima [4], ||b.4]| is null-preserving if and only if:

(3-7) lim b,; = O, for each k;
n—ro0
(3-8) S bar| £ M < o, for all .
k=0

But (3-6) is equivalent to (3-7), and (3-5) is equivalent to (3-8). This
proves Theorem 2.

Since its members are non-negative, {f;} is not an arbitrary null-
sequence; hence this proof cannot yield necessary conditions for
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N,CN,. Indeed, (3-5) is not necessary; see Corollary 2, following
Theorem 7.

The symbol C, (» =0) represents the Cesaro summability method of
order r aver sequences of random variables.

COROLLARY 1. Let N, be a regular Norlund summability method. Set
q-1=0. 4 sufficient condition for CyC N, with respect to the summability
in probability of normal families of independent, real-valued, symmetric
random variables to 0 is that

> 2, 2 2 2
(3-9) 2=k +1) | g — gra| = 0@
k=0
Proor. Identify C; with N, in Theorem 2. It is found that
p(x)=(1—x)"! and that \,=¢2—¢,21. Condition (3-6) is automati-
cally satisfied, since N, is regular. Condition (3-5) is thus sufficient

for C;C N, But when N, is C; ,(3-5) takes the form (3-9), proving
the corollary.

THEOREM 3. Suppose pn < pny1 and qn = quy, for all n. Then a suffi-
cient condition that N,= N, with respect to the summability in probabil-

ity to 0 of normal families of independent, real-valued, symmetric random
variables is that

(3-10) 2 UMl + ) < .

k=0

Proor. Let Z;Lol)\kl =A4?2< w and Z;Lo]ukl =B2< «. Since p(x)
= q(x)u(x), and since ¢, is nondecreasing, we find that p2 = % oGun_s

<@ 2ol n_t| B?@. Thus p, <Bg,, whence it follows that, for all
k=n, Py =BQ.. Hence, for all n,

0" Pil Maci| £ B | M| £ B'A” < w.
k=0 k=0

Therefore (3-5) is satisfied. Since Zl)\,.| <, N\,=0(1) and (3-6) is

satisfied. By Theorem 2, N,C N, for all normal families under con-

sideration. By interchanging p and ¢ it is seen similarly that N,C N,.
Hence N,= N, proving Theorem 3.

With the strong hypothesis that p, and ¢, are nondecreasing, Theo-

rem 3 is rather weak. In fact, it follows from Theorem 5 that if

Pn S P and ¢n @, for all n, and if N, and N, are both regular,
then N,=N,.

THEOREM 4. Let N, be any regular Norlund summability method such
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that CiC N, with respect to sequences of real numbers. Then CiCN,
with respect to the summability in probability of normal famalies of inde-
pendent, real-valued, symmetric random variables to 0.

Proor. If N, satisfies the hypothesis, we know by (2-3) that

(3-11) > (n+1-B]g— gea| =00

k=0
By Lemma 3, proved in §4, (3-11) implies (3-9). By Corollary 1 above,
(3-9) implies that C;C N,.

Theorem 5 is a second special case in which it is shown that N,CN,
implies N, C N,. Indeed, in this case it is even shown that N,=N,.

Since it is possible that N, N,, it is untrue that N,C N, implies
N,CN,.

THEOREM 5. Let N, be any regular Norlund summability method such
that gn = @ny1, for all n. Then Cy= N, with respect to the summability in

probability of normal families of independent, real-valued, symmetric
random variables to 0.

Proor. Given a regular N, with g, = ¢4 for all . By (2-4), C;CN,.

Hence, by Theorem 4, C;CN,. There remains only the proof that
N,CC,. This will be given in two steps.

I. Since N, is regular, for each # we have, as r—, ¢./Qn+r =¢,/Q>
—0. Let 8(n) =max,20(¢;/Qn+r). We shall prove that

(3-12) né(n) =B >0 (n=1,2,3---).
Let t,=¢,/Q,. Then
qr
Qntr

Fix n>0. Since {,=1 and lim, ¢,=0, we may let #(#) be the largest
value of 7 for which ¢.= (n+1)~% Then

(n 1 1\
g (n) > ( 1— )
Q"H—r(n) n+1 n-+41
)} =
n-+1 " o +1
Since 8(1) Z ¢r(n)/ Qntrny, it is seen from (3-13) that (3-12) is true.
II. Suppose, for a contrapositive proof, that {xk} is a normal fam-

ily of independent, real-valued, symmetric random variables which
is not summable-C;to 0. Let s_y=0;for =0 let s, =Z’,‘=oa§ =sn41. By

=4(1 = bep)(1 — ty2) - - - (1 — trin).

(3-13)
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Theorem 1, {#~%s,} is not a null-sequence; we can therefore find €>0
and integers 0 <m; <m3< - -+« <n;<n;iy31< - - - such that

(3-14) Su = emi G=1,2,---).

Let ¢_1=0. Let ¢(n) =Q;? ZZ-O o3G-1=05* Z:-osk(qg-t_q'zi—k—l)- By
Theorem 1, {x,} is summable-N, to 0 if and only if {¢(n)} is a
null-sequence. To complete the contrapositive proof we show that
{¢(n)} is not a null-sequence. Fix any #,. Since g, and s, are both
nondecreasing, it is seen for all n=#n; that

é(n) = O i K(qntk — Quit)

ke=ng

—2 id 2 2
g. Qn Sn¢ E (Qn-—k - qn—k—l)

k=ns
2 —2
= Sns’Qn—-niQn

2 2 —2
eniQn—m‘Qn .

v

The last inequality is by (3-14). Hence for some integer n/ greater
than #; we have

o(nl) > en; {2_1 max (qi_,,...Q;._z)} = Z—Ienf{é(m) }2.
nxng

By (3-12) we see that ¢(n!)>2-1¢82>0. Thus {¢(n)} cannot be a
null-sequence, completing the proof of Theorem 5.

The satisfaction of condition (3-12) is equivalent to regularity for
Norlund summability methods N, whose counterparts N, can sum
to 0 a sequence {x:} of random variables which are not all identically
zero. That is, nonregular No6rlund methods which satisfy (3-12) have
only a trivial applicability to the summability of random variables.

It was proved in [1, Theorem 5.10] that, for r>1, Ci=C, with re-
spect to the summability to 0 of arbitrary sequences {x:} of inde-
pendent, real-valued, symmetric random variables. When we further
restrict {x:} to normal families, the present Theorem 5 extends iden-
tity with C; to a wide class of Norlund summability methods includ-
ing all methods C, for r >1.

Theorem 6 is the third special case in which it is shown that N,CN,
implies N,CN,.

THEOREM 6. Let N, be any Nirlund summability method such that
P i1, for all n. Then N, C C, with respect to the summability in prob-
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ability of normal families of independent, real-valued, symmetric random
variables to 0.

Proor. Let C; be identified with the N, of Theorem 2. We have
p(x) =2 mopix™ and g(x) =(1—x)~% Letting a,=p2.—p2, we see
formally that Y m ohax™=g(x)/p(x) = (1 =D me1a.x™)~ 1. Hence

(3-15) ( i )\nx") (1 - i a,,x") = 1.

n=0 n=1
Equating coefficients in (3-15), we find that Ag=1 and
(3-16) >\n = al)\n—_l + dz)‘n—d + ce + >‘0an (” = ly 21 A )'

Since Ap=1 and since a, 20, it is seen from (3-16) that \,=0 for
all . (The non-negativity of {\,} is also a result of Kaluza [3].)
Now > o ia,=> = (p2a—p2) =$2=1. By (3-16), \, is a weighted
sum of {)\o, Ny ococ e, 7\,,}, with total weight Z’;,,lak =<1. Therefore
0 =\, SmaxegigaaMe Since No=1, this implies that all N\, £1. But
Q.=n+1. Hence \, =0(Q?), proving (3-6).

Let R,=) p-opi. We have the following formal identities:

_ g(x) _ (1 — %)"1g(x) B (1 — z)—2 ; (n+ 1)x»

A = = =
@ p(®) (A= a)7p(®) (1 — )7 plan 2 Rua

Therefore M(x)Y poRix® = meo(n+1)x", formally. Equating coeffi-
cients of x” and remembering that N\, =0, we find that

(3-17) 2R Mkl =n+1  (n=0,1,2,---).
k=0

But, by Schwarz’s inequality, Pi=(Q teot)? <O t0?) O tool)
=(k+1)R:. Hence

(3-18) Pism+ DR  (E=0,1,2,---,n).

From (3-17) and (3-18) it is seen that Z’i,oPil)\n_kl S(m+1)> s-oRs
I)\n_kl =(n+41)2= Q2 Hence (3-5) is satisfied. By Theorem 2 the pres-
ent proof is complete.

Any Nérlund method N, with nonincreasing p. is necessarily regu-
lar, for pn/Pn S pu/npn=1/n—0, as n— . Moreover, N,CCi.

The Cesaro summability methods C, (0 <r <1) are of the Nérlund
type with nonincreasing {p,}. Theorem 5.5 of [1] showed that, for
0<r<1, C,CC over arbitrary sequences of independent, real-valued,
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symmetric random variables. Theorem 5.6 of [1] showed that, for
0<r<1, C:C,, even over normal families. Hence the conclusion of
Theorem 6 cannot in general be extended to assert that N,=C..
One may ask whether Theorem 4 has a converse. That is, if N,
is regular, and if CiC N, over real sequences, can one always find a
normal family summable-C; to 0 but not summable-N, to 0?7 When
N,is C, (0<r<1), we just saw that the answer is “yes.” In general,
however, the answer is “no,” as is shown by the following theorem.

THEOREM 7. There exists a regular Niorlund summability method N,
with the following properties:

(3-19) N,CCy, with respect to sequences of real numbers;

(3-20) Ciq N, with respect to sequences of real numbers;

(3-21) N,=C, with respect to the summability in probability of nor-
mal families of independent, real-valued, symmeiric random variables
to 0.

Proor. Let p,=1 (n even); let p»=0 (n odd). Then P,2~n/2. Now
P*(x) =D npnxm =2 np2xn=p(x) = (1 —x2)~L Let C; be identified with
the N, of (2-1), (2-2), and Theorem 2. Then g,=1 and Q,=#n+1, for
all . Furthermore, g*(x) = ng.x" =2 .g2x"=(1—x)%. Then \*(x)
=Ax) = (1 —%)71/(1 — x*)~' = 1 + w, while p*(x) = p(x) =1/Mx)
=(14x)"t Hence AF=No=A*=Ni1=1; \F=\,=0 (n=2); puF=pn
=(—1)», for all n.

I. Obviously \*=0(Q.);and Y s-oPi|NE 4| =PatPo1n=0(Q.).
Hence, by (2-1), N,CCi over sequences of real numbers.

I1. Since Z,‘;olu,.*l = o, we find from (2-2) that N,#C for se-
quences of real numbers. Since N,C C;, we know that CiCN,.

III. Obviously M.=0(Q2); and Y 2_oP:|Nas| =Pi+P2.n?/2
=0(Q%). Hence, by Theorem 2, N,CC; for the {x;} of (3-19).

IV. To prove CiCN, we are unable to use Theorem 2 by inter-
changing p and ¢ and putting {un} into (3-5) and (3-6). However,
(3-5) is not a necessary condition, and we shall show directly that
C1C N,. Consider any normal family {x;} which is summable-C; to 0.
By Theorem 1, #£) 2.,02—0, as n—wo. Hence Pi2) p_opl.i0s
P p0i(4/n0)) 2.003—0, as n— . Theorem 1, applied to N,,
proves that {xk} is summable-N, to 0. Hence CiCN,, and so, by III
above, C;=N,. This completes the proof of Theorem 7.

It is curious that the necessity of condition (3-5) for N,C N, over
normal families {xx} breaks down just for an example where we fail
to have N,C N, over real sequences.

CoOROLLARY 2. Condition (3-5) is not necessary for NyC N, with re-



19471 NORLUND SUMMABILITY OF RANDOM VARIABLES TO ZERO 311

spect to the summability in probability of a normal family of independ-
ent, real-valued, symmetric random variables to 0.

4. Lemmas used in proof of Theorem 4. The following Lemmas 1
and 2 are used to prove Lemma 3, which was applied to the proof of
Theorem 4. In all three lemmas, ¢_;=0 and {c;} (1=0,1,2,--.)
is an arbitrary sequence of non-negative numbers. The number
| ci—ci| is usually abbrevated to h.

LeEMMA 1. With the above notation, for each integer n=1,2, 3, - - -,
(4-1) holds: .
n— n—1
(4-1) 26— cia| €23 hihs.
=0 %, 5=0

Proor. We use a proof by induction. Since ¢_1=0, (4-1) is true for
n=1. Suppose that (4-1) holds for #=N. Let cy =0 be arbitrary. Now

N2 2 2 2 N1
Slei—cia| S| en — ewea| + 2 hik;
=0 Ry

2 2 ul vl 2
= | CN — CN—l‘ + Z h,’h,‘*— 22 hihN - h)v.

1,7=0 1=0

Thus to prove (4-1) for n=N+41 it is sufficient to prove that

N—-1
(4-2) | ey — oxea| — 2 3 hihw — by < 0.

=0
Now cy—1=0 1o (ci—Ci1) ) ot ¢i—¢ia|. Therefore

N-1
(4-3) ZGN_l § 22 h.’.
1=0
Case 1. Suppose cy=cy_1. Adding cy—cy—1=hy to both sides of
(4-3), we find that .
—1

(4-4) cn + ov—1 S 22 hi + hy.

=0
Multiplying both sides of (4.3) by IcN—cN_1| =hy, we see that (4-2)
holds, proving the lemma for Case 1.

Case 2. Suppose cy<cy—i. Then from (4-3) we see that 2cn
<2y N-ip. Adding cy_1—cy=hx to both sides of the last inequality,
we see that (4-4) holds. The proof of the lemma is completed as in
Case 1.

LEMMA 2. With the same notation, for each integer n=1,2,3, - - -,
(4-5) holds:
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n—1
22]0?— cf_.ll +lci— c:_1|

te=(

(4-5) n—1 n—1
<2 Y hihi+ 2k, Y (n+ 1 — ki + b
1, J=e0 =0

ProoF. By Lemma 1 it suffices to prove that

n—1
(4-6) lon = ono1| S 2k 3 (41— )i + I

1==0
If h,.=lcn—c,,_1| =0, (4-6) is trivial. If not, (4-6) is equivalent to
(4-7):

n—1

(4-7) tnt 1 22>, (m4+ 1= D)hi + ha.

i-o
To prove (4-7), we start with the inequality
Cat o+ c14 o A Cama + 2001

n—1

=2 (n+ 1= 9)(e — cio).

=0
Hence

n—1

(4-8) 2,122, (n+1—d)h.

1=0
Now (4-7) follows from (4-8) just as (4-4) followed from (4-3), by
use of two cases. Thus the proof is complete.

LeMMA 3. With the same notation, for each integer n=0,1, 2, - - -,
(4-9) holds:

S(n— k41| cx — o]
k=0

(4-9)

n 2
=< {Z(n—- k+1)|6k'—ck-—ll} .
=0

Proor. Let ¢, =Z’,‘=o(n-——k+1)2|c§——c,3_1| ,forn=0,1,2, - - -.Let
¢_1=0. Let Y= {D tuoln—k+ 1)k} 2 =D t_o(n—i+1)(n—j+1)hik;
forn=0,1,2, - - - . Let y_1=0. We must prove that ¢, Sy, for all n.
Since the result is trivial for =0, fix n=1.

We take first and second differences of ¢, and ¢,:
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Adn = ¢n — dus = 2 (20 — 2k + 1) | cr — croa|.

k=0

n—1
N'¢n = Apn — Adnoy = 23| e — cros| + | en — caoa |-

k=0

AVw =n —Yua= 2, 2n+1—i— jhih;.

%,7=0
n—1 n—1
A = O — Dy = 2 3 hibj+ 2k, 3 (n + 1 — i) hi + B
1,7=0 1==0

Now by Lemma 2, A%, A%, for all integers n=1. Hence A¢, SAY,
and therefore ¢, =y, for the same integers. This proves Lemma 3.
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