
BOOK REVIEWS 

Les systèmes différentiels extérieurs et leurs applications géométriques. 
(Actualités Scientifiques et Industrielles, no. 994.) By Elie Cartan. 
Paris, Hermann, 1945. 214 pp. 450 fr. 

This book gives a revised account of lectures delivered in 1936-
1937 a t the Sorbonne. The content is based almost exclusively on the 
author's own outstanding contributions to the subject a t the begin­
ning of the century. In developing many of these old results, how­
ever, the author's present viewpoint is new as well as stimulating. 
The whole treatment, even at the few points where it touches upon 
contemporary work by other writers, bears the stamp of the author's 
individuality. 

The fundamental calculus employed is Grassmann algebra. Car-
tan's manner of regarding this discipline might be described as fol­
lows. The indeterminates are differentials and the polynomials are 
forms. Interest centers in skew-symmetric (necessarily multilinear) 
forms, which can be written 

(1) F = ah. n 

where the coefficients a are skew-symmetric in every pair of indices 
and where the summation convention is being used. An equivalent 
expression for F is 

F = — a« 

U\ U\ 

where the a's are the same as in (1). The exterior product of F by the 
form G = bi +1.. .t- u%£\ • • • #£fj| is the skew-symmetric form defined 
by 

m- 'H * * -*p+ö Mi 
ip+q 

where the c's are found by applying all (p+q)l signed permutations 
to the subscripts on a^. 
product applied to tfi, • • , u% gives 

*p+q and adding. The definition of 

U\ 

\ux • • • uP J = 

U\ 

uv 

261 



262 BOOK REVIEWS [March 

so that F may be written 

F = — ^ . . . ^ [ « i • • • Wp J, 

or, if the subscripts on the u's are omitted, as 

(2) F = —%«1...i9[uh---u9\ 

with the understanding that the interchange of two u's is to be com­
pensated by multiplying by — 1. When a skew-symmetric form is 
written in the symbolic notation (2), it is called an exterior form. 

In this way, Cartan is able to construct simultaneously for his 
symbols two types of product, both of which can be evaluated for 
real values of the indeterminates. To distinguish between them a 
notation such as the brackets is necessary. As in the case of the vec­
tor product the use of brackets has its disadvantages: in the latter 
half of the book brackets are frequently used also as parentheses. 
Other writers, for example, Goursat in his Problème de Pfafft regard 
the matter differently. One set of indeterminates (say, derivatives) is 
subjected solely to ordinary multiplication and another (say, differ­
entials) solely to exterior multiplication. This not only makes the 
brackets unambiguously available for their normal use as fences but 
has manipulative advantages as well. 

Besides developing Grassmann algebra along lines familiar to read­
ers of Cartan's Invariants intégraux, Chapter I has several note­
worthy features, which we proceed to mention. 

On page 10 there is a theorem neatly contrasting an ordinary 
quadratic form F with an exterior quadratic form G, namely, 

dF dG 
u{ = IF, ul = 0, 

du1 du* 
r ÔF-\ r dGi 
Xu1 = 0 , w* = 2G. 
L duU L dulJ 

The theorem on linear dependence (p. 11) is also cast in this contrast­
ing form. 

The condition that a form be monomial (that is, have independent 
linear factors equal in number to its degree) is discussed at length. 
One might be tempted to dismiss the matter after saying that the 
associated system must have rank equal to the degree of the form. 
Cartan, however, finds in simple and elegant manner polynomials 
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whose vanishing expresses the condition. I t is interesting that the 
polynomials are quadratic. In the case of a quadratic exterior form, 
the facts could also be inferred from two familiar results: (i) a skew-
symmetric matrix has rank at most two if and only if all principal 
determinants of order four are zero and (ii) a skew-symmetric deter­
minant of order four is the square of a quadratic in its elements. If the 
theorem on matrices corresponding to Cartan's general result has 
been stated, it is at least not well known. 

Instead of defining fe-planes, as formerly, by the components of k 
independent vectors Cartan now employs the analogue of Plücker's 
line coordinates. At least as far as the applications in the present 
book are concerned, the increase in the number of coordinates and 
the necessity of satisfying the relations among them more than off­
set the advantages of their introduction. For example, brackets being 
omitted, the system (p. 27) uluz = uW = ulu2 — uzu4 = 0 is at once seen 
to imply wx = 0 or uz = au1, ufi — bu1, u*u4 = 0, w1w2 = 0 without appeal­
ing to Plücker coordinates and the quadratic relation among them. 
Conceivably, these coordinates may be elegant means for further 
developments in the theory. An extended treatment of their proper­
ties has been made by J. W. Givens, Tensor coordinates of linear 
spaces, Ann. of Math. (2) vol. 38 (1937) pp. 355-385. 

The definition (p. 30) of the associated system for a system of equa­
tions is a noteworthy accomplishment, although it is not the ultimate 
because the rank gives the minimum number of indeterminates in an 
algebraically (defined on p. 28) equivalent system rather than simply 
in an equivalent system. The author remarks (p. 56) that the char­
acteristic systems (which are associated systems) for two equivalent 
differential systems are not necessarily equivalent. 

Chapter II discusses the differential dF of an exterior form F, its 
geometrical significance, and its connection with Stokes' theorem. 

Chapters I I I , IV, V and VI give a systematic account of the au­
thor's theory of Pfaffian systems. Although most of the exposition 
follows established lines, it is decidedly advantageous to have this 
material united in one volume, particularly for the purpose of the 
geometrical applications in the last 90 pages. 

The gist of this theory is as follows. The system considered con­
sists of a finite number of exterior forms Fp in the differentials of n 
variables x* with O^deg Fp^n. A solution is a set of functions 
faix1, • • , xn) such that the vanishing of ƒ«, dfa implies the vanishing 
of Fp. An immediate consequence of the definition is that the system 
Fp is equivalent to the system Fp, dFp, which is called closed. Attention 
accordingly can be confined to closed systems. From this standpoint 
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fa constitutes a solution of Fp if and only if the closed system ƒ«, dja 

implies the closed system Fp, dFp. 
Of fundamental importance are the linear Pfaffian system, for 

which each Fp is linear, and the completely integrable type of such a 
linear system, which is equivalent to dfp. The properties of these 
systems are developed in Chapter I I I . The condition for a completely 
integrable linear system is stated (p. 49) in terms of the "anneau" 
defined on p. 26; unfortunately the author has not followed Ore's 
lead (L'Algèbre abstraite, p. 6) in reserving "anneau" as a transla­
tion for "ring." Mayer's method (integration by means of ordinary 
equations) is treated in §37 ; its generalization (integration by means 
of equations in k — 1 fewer independent variables) is indicated later 
(p. 78) for systems having k characters equal to zero. In reading §37 
it may be helpful to insert the stipulation "of n — r dimensions" into 
the statement of the theorem, to supply the arguments z1, • • • , zr on 
the right of (2), and to by-pass the question of the hypotheses on 
which the discussion rests by taking refuge in the general hypothesis 
of real, analytic functions (p. 45) and in Cauchy's theorem for ordi­
nary differential equations. Later (p. 50, Remark IV) the assumption 
of the existence of first derivatives shows that (2) satisfies the Lip-
schitz condition even when its right members contain the s's. The 
well known integration of a single partial differential equation is ex­
pounded as an application of the theory of completely integrable 
systems. 

Cartan's existence theorem, which is the backbone of the subject, 
involves the notion of k-tangent (or integral jfe-plane). If the form Fp 
has degree p, let its indeterminates be wj1» • • • , u%. A fe-plane is 
defined by k independent vectors v{, X = l, • • • , k. This &-plane is a 
^-tangent for the system if and only if the set of forms Fa vanishes 
whenever each indeterminate vector ^« is identified with an arbi­
trary one of the vectors V\. If we start with a fe-tangent and seek a 
(fe+l)-tangent containing it, the system S^+i upon the components 
of the (fe + l ) th vector v\+1 is linear and homogeneous. A point x* 
is an ordinary 0-tangent if the forms of degree zero in Fp vanish at xi 

and if the matrix of the linear equations in Fp has maximum rank at 
x\ By induction, a ^-tangent is defined as ordinary if it contains an 
ordinary (fe —1) -tangent and if for it the system 2&+i has maximum 
rank. The notation Eh will be reserved for an ordinary fe-tangent. 

An integral variety of k dimensions is an ordinary solution if the 
k vectors tangent to its parametric curves constitute an Ek for every 
point. The notation Vk will be reserved for an ordinary solution of k 
dimensions. 
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The maximum dimension g for an ordinary fe-tangent is called the 
genus. Cartan previously gave for the genus of a linear system a lower 
bound which is not repeated or generalized here. I t is 

(n - r)/(r + 1) g g, 

where n is the number of variables and r is the number of equations. 
The existence theorem asserts there is a Vk if and only if k does 

not exceed the genus. More precisely, it states that if k<g, through 
Vk there passes a Vk+i depending on specified arbitrary elements. 
This is proved by an appeal to the Cauchy-Kowalevsky theorem. 

A system is in involution with respect to a set of k variables 
xlj - • • , xk if it possesses a Vk on which xl, • • • , xk are independent, 
that is, on which [dx1 • • • dx^^O. Necessary and sufficient condi­
tions for a system to be in involution are given in terms of the char­
acters, which are non-negative integers determined by the ranks of 
the systems St- used to define £*. 

The final chapter on existence theorems describes the author's 
method of prolongation, whose purpose (p. 112) is to make each solu­
tion of a given system appear as an ordinary solution of a system in 
involution. As the author states (p. 120), singular solutions escape 
the theoretical discussion of prolongation, but for particular systems 
prolongation can be effected without this drawback. I t is therefore 
recognized that the general process of prolongation and the field of 
its applicability have still to be rendered precise. 

There are two fundamental requirements for a theory of differen­
tial systems: (1) a normal form for which a precise theorem can be 
rigorously proved; (2) a process for reduction to normal form. The 
process in (2) has two aspects: (2.1) formation of integrability condi­
tions; (2.2) application of an implicit function theorem. Cartan's 
normal form is essentially a set of Cauchy-Kowalevsky systems and 
is less inclusive than Riquier's orthonomic system. Cartan's opera­
tion (2.1) involves prolongation, whereas Riquier's is precise. As for 
(2.2), the theories are subject to the same difficulties, but for alge­
braic systems these have been removed from Riquier's theory by 
Ritt. 

The last two chapters give applications to the differential geometry 
of surfaces (Chapter VII) and of certain higher spaces (Chapter 
VIII) . In addition to furnishing excellent illustrations for the pre­
ceding theory, they bring out in novel fashion the dependence of the 
solutions of the problems on the arbitrary elements. Conformai and 
isometric correspondences, Weingarten surfaces, isothermic surfaces 
and triply orthogonal systems are among the score of topics treated. 
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Schlaefli's theorem that every Riemannian space of n dimensions can 
be immersed in Euclidean space of n(n+l)/2 dimensions is discussed 
in great detail (pp. 199-210) for the particular case w = 3 and refer­
ence is made to the proofs of Janet and Cartan for the general n. In 
this connection, it might be remarked that the detailed discussion 
given by Janet (Annales de la Société Polonaise de Mathématique 
vol. 5 (1926) pp. 39-40) for the case w = 2 is convincing, whereas the 
counter-example given for the same case by Forsyth {Intrinsic geom­
etry of ideal space, vol. 1, pp. 231-233) is not. A relatively simple 
proof of the theorem would be highly desirable. Cartan's discussion 
of the case n = 3 may help in that direction. 

J. M. THOMAS 

Tables of fractional powers. Prepared by Mathematical Tables Proj­
ect, National Bureau of Standards. New York, Columbia Univer­
sity Press, 1946. 489+30 pp. $7.50. 

The tables here printed yield the values of A x and xa. For example, 
there are tables of A x for A = 10,7r, 10~~3P (where P is a prime between 
100 and 1000), as well as for other values. Thus 10* is given to IS 
decimals for 0.001 Sx^ 1.000 with x advancing in intervals of .001. 
The function xa is computed for the values a= ± 1 / 2 , ± 1 / 3 , ± 2 / 3 , 
± 1 / 4 with 0 ^ x ^ 9 . 9 9 in intervals of .01. There is a bibliography 
with 76 titles and an introduction by Dr. Lowan in which the method 
of computation of the tables is explained and the accuracy of inter­
polation is illustrated by examples. 

E. R. LORCH 

Tables of the modified Hankel functions of order one-third and of their de­
rivatives. Cambridge, Harvard University Press; London, Oxford 
University Press, 1945. 36+235 pp. $10.00. 

This set of tables is the first to be published by the Computation 
Laboratory of Harvard University. The functions here considered are 
solutions of Stokes* differential equation d2u/dz2+zu = 0 and were 
needed in connection with the work of the Radiation Laboratory 
on diffraction and refraction of waves. Solutions to Stokes' equation 
are h\{z) = {k/i^fz^e^^'Ht (where k is a constant and L\ is an infinite 
broken line in the complex plane) and h2(z), which has a similar ex­
pression. I t is the functions hi(z) and their derivatives hi (z) which are 
tabulated. The tables give the real and imaginary parts to eight 
decimal places for z~x+iy with | x + i y | ^ 6 and x> y progressing 
in intervals of 0.1. The functions hi(z) are related to the Hankel func­
tions of order 1/3 by the equations *<(*) = ((2/3)zzf2)1fzH[%((2/3)z^)J 


