NOTE ON THE KUROSCH-ORE THEOREM
R. P. DILWORTH

1. Introduction. The Kurosch-Ore theorem?! asserts that if an ele-
ment of a modular lattice has two decompositions into irreducibles,
then each irreducible of one decomposition may be replaced by a
suitably chosen irreducible from the other decomposition. It follows
that the number of irreducibles in the two decompositions is the same.

The purpose of the present note is to study the manner in which the
irreducibles of two decompositions can replace one another. Now from
the Kurosch-Ore theorem it is not even clear that each irreducible of
one decomposition is suitable for replacing some irreducible of the
other decomposition. However, this follows from the following precise
theorem:

THEOREM 1. Let a be an element of o modular lattice and let
a=qN « - - Nga=g{MN - - - Mg, be two reduced decompositions into
irreducibles. Then the ¢’s may be renumbered in such a way that

a=qMN--- nQi—lnq;{-\Qi-Hm SERN A/ i=1,+,m

Along the same line of ideas, the following theorem on simultaneous
replacement is also proved.

THEOREM 2. Let a be an element of a modular lattice and let
a=qMN - Ngu=¢/ N + -+ Mg be two reduced decompositions into
irreducibles. Then for each qi, there exists q/ such that q} can replace
qi in the first decomposition and q; can replace qf in the second decom-
position.

On the other hand, an example is given which shows that, in gen-
eral, it is impossible to renumber the ¢’s in such a way that simultane-
ously ¢; may replace ¢/ and ¢/ replace ¢i.

As the principal tool in the investigation we introduce the concept
of a superdivisor r of an element a. r has the fundamental property
that its crosscut with any proper divisor of a is never equal to a.
The superdivisors of @ are closed under crosscut and indeed form a
dual-ideal t, which properly divides a.

A surprising by-product of the investigation is the fact that in a
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1 A simple proof is given in Birkhoff [1, p. 54]. Numbers in brackets refer to the
references cited at the end of the paper.
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modular lattice satisfying the ascending chain condition, t, can be
used to prove the existence of covering ideals. Thus, in this case, the
customary use of transfinite induction can be avoided.

2. Properties of superdivisors. Let M denote a modular lattice of
elements @, b, ¢, - - - . a2b will denote ordinary lattice inclusion
while aDb will denote proper inclusion. We recall that an element ¢
of M is (crosscut) irreducible if g=xMy implies either g=x or g=y.

DEerINITION 1. A divisor 7 of a is a superdivisor of a if rMNx=a im-
plies x =g for all x in M.

The following lemmas give the basic properties of superdivisors.?

LeMMA 1. If 7 is a superdivisor of a and s2Dr, then s is a superdivisor

of a.
For sMx=a implies rMx=a implies x =a.

LeEMMA 2. If r and s are superdivisors of a, then r(N\s is a superdivisor

of a.

For (rMs)Nx=a implies rM(sMNx)=¢ implies sNx=a implies
x=a.

COROLLARY. The superdivisors of a form a dual-ideal v, of M.

LeEMMA 3. If q is an irreducible divisor of a and xDgq, then x is a super-
divisor of a.

For if xNy=a,then ¢=¢Ja=¢\J(xNy) =xMN(g\Vy) by the modu-
lar law. Since g is irreducible and ¢ ##x, it follows that ¢=¢'\Jy. Hence
y=qgNy=gMNxMNy=gNa=a. Thus x is a superdivisor of a.

Now if a=g¢M - - - Mg, is a reduced decomposition of a into ir-
reducibles, we shall set Q;=¢:1M - - - NgiaMgizaM\ - + - Mga. Clearly
a=¢:N\Q;and Q;*a.

LeEMMA 4. Let a=q;M - - - (g, be a reduced decomposition into ir-
reducibles. Then if r is a superdivisor of a, g.\J (rM\Q;) is also a super-
divisor of a.

By Lemma 3 if ¢;\J (M Q,) is not a superdivisor of a, then ¢;27MQ;.
But then »MNQi=rMNg:N\Q;=a. Hence Q;=a which contradicts Q; #a.

LEMMA 5. Let a=gq:"\ - - - (Mg, be a reduced decomposition into ir-

2 If the descending chain condition holds, it is easy to show that 7 is a superdivisor
if and only if » Du, where u, is the union of the elements covering a. Cf. Dilworth [2,
p. 288].
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reducibles and let x DriM\Qy, r2MN\Qq, - - -, r:\Q; where ry, + -+, 7; are
superdivisors of a. Then x2DrM\gip - - - Mg, where r is a super-
divisor of a.

Now clearly x2rMNgiM\ - - - Mg, for any superdivisor 7 of a. Let &
be maximal such that x27MgsM - - - Mg, for some superdivisor 7.
Suppose & =7. Then by the hypothesis of the lemma x 27y NQs. Let
r'=rMNryr. Then x2D('NgM - - - Ng)\J('NQr) =r'NqeaM - - -
Ng.N(g:\J(#'MNQx)). But ¢:\J(»'MNQx) is a superdivisor of ¢ by
Lemma 4. Hence "M (g:\J('MQw)=r"" is a superdivisor of a by
Lemma 2. But then x27'/MggaM + + + Mg. contrary to the maximal
property of k. Thus 2>7 and the conclusion of the lemma follows.

3. Decomposition theory. The application of superdivisors to de-
composition problems rests on the following lemma:

LEMMA 6. Leta=q:M\ - - - (Mg, be a reduced decomposition of a. Then
g: may be replaced by an irreducible divisor q of a if and only if g2rMQ;
is false for every superdivisor r of a.

Let us suppose that g can replace g;. Then a=¢MNQ;. Hence if
g2rMQ; for some superdivisor 7, then rMNQ; =rMNgMNQ;=rMNa=a and
Q:=a which is impossible. Thus ¢2rMNQ; fails for every superdivisor
r. Conversely suppose ¢27MQ; holds for no superdivisors 7. Then

g2¢NQi=@NEIV (@NQE)=[aY(eNQE)NQ.

Hence ¢;\J(¢gMNQ;) is not a superdivisor of ¢ and by Lemma 3 we have
¢i2¢MNQ;. Thus ¢gNQ:=gMNg:N\Q;=a and g can replace ¢; in the de-
composition.

The theorems stated in the introduction can now be proved.

Proor oF THEOREM 1. Let S/ denote the set of irreducibles of the
second decomposition which can replace ¢; in the first decomposition.
Now suppose that there are k of the sets S/ which together contain
less than k irreducibles. Renumbering if necessary, we can suppose
that SY, - - -, Si are composed of the irreducibles ¢, - - -, ¢/ where
I<k. It follows that ¢/ cannot replace ¢; if j>1 and 4<k. Hence by
Lemma 6, ¢/ 27;;M\Q; for some superdivisor 7;; of a if j>1I and ¢<k.

From Lemma 5 we conclude that g/ D7;/MN\qia - - - Mg, for some
superdivisor 7; of @ if 7>1. Thus ¢/11M - -« Mg 2Ny + + - MN\gn
where r=7,1M - - - Mr, is a superdivisor of ¢. But then

a=q; M- f\q;’f\q’;,,_lf\ cee f\q,erf\q{ﬁ e f\q;’f\qkﬂf\ <o Nge2a.
Hence a=rMg/ M - - - Ng{ NgrpaM - - + Mgy Since 7 is a superdivi-
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sor of a, we have
a=q1'f'\ . . -(\qff\qkﬂf\ ERNAY

Since I <k, the number of components in this decomposition is less
than #, contrary to the Kurosch-Ore theorem. Thus every k of the
sets S/ contain at least & irreducibles. It follows from the Radé-Hall
theorem on representatives of sets that there exists a distinct set of
representatives for the sets S7, - - -, S/ . Renumbering if necessary,
we may suppose that these representatives are g{, + * * , g« . But then
g/ can replace ¢; and the theorem is proved.

ProoFr oF THEOREM 2. Renumbering if necessary, we may suppose
that ¢f, - « -, g/ can replace ¢; while the others cannot. According
to Lemma 6, ¢/ 27,,\Q;, j=I+1, - - -, n, where r; is s superdivisor
of a. Now suppose that ¢; can replace none of the irreducibles
¢, +, ¢/ in the second decomposition. Again by Lemma 6 we
have ¢;2r/NQ/, j=1, - - -, I. From Lemma 5 we conclude that
g:2r'NglaM - - - Mg, for some superdivisor #’. Now ¢/ - - -
Ng 2raM -« - NraMNQi=rMQ; where 7 is a superdivisor of a.
Hence ¢:27'MrMQ: where »'Mr is a superdivisor of a. But then
r’'"MrN\Qi=r'MrMQiNg;=a and Qi=a contrary to hypothesis.
Hence g; can be replaced by g; for some j =!I. Thus ¢; and ¢/ can re-
place one another.

In order to see that a sharper theorem on simultaneous replacement
cannot be proved in general, consider the lattice of subspaces of the
seven-point projective plane. If 1, - - -, 7 denote the points, let the
lines (and the points they contain) be denoted by 1;(124), 5(235),
15(346), 1,(457), I5(156), 16(267), 1;(137). L, - + -, Iy are the irreducibles
of the lattice. Let us consider the decompositions of the null space 2.
We have

2 = llmlzmls=lamleml7.

Now the possible sets of replacements of i, ., I3 respectively are
(s, 26, 17), (Le, Is, 17), and (Js, 17, Is). But Iy, I, Iy is a possible set of replace-
ments only for (s, I1, ls), (I, Is, ls), and (I+, ls, ls). Hence it is not possi-
ble in this case to renumber the irreducibles in such a way that corre-
sponding irreducibles can replace one another.

4. Existence of covering ideals. It is well known that the lattice
of dual-ideals of a lattice M contains M as the sublattice of principal
ideals.? Hence if ais a dual-ideal, by aDa we shall mean a2 (¢) where

3 For the general properties of dual-ideals used in this paper see Dilworth [3, pp.
329-331].
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(a) is the principal ideal generated by a. Also a>a (a “covers” a)
means aDa and no ideal exists which properly contains a and is
properly contained in (a). We give a proof of the existence of covering
ideals which does not require transfinite induction.

THEOREM 3. Let an element a of a modular lattice M have a decom-
position into irreducibles. Then if a2Da, there exists a dual-ideal p such
that a2p>a.

Proor. Let a’=aMt, where 1, is the dual-ideal of all superdivisors
of a. Then a’ £ (a). For if a’=(a), then xN\7r=a where xEa and ris
a superdivisor of a. But then x=¢ and a=(a) contrary to aDa.
Now let a=gM\ - - - Mga be a reduced decomposition of ¢ into ir-
reducibles. Clearly taMNgiM - - - Ngia2tMN@MN - - - MNg;. Suppose
@GN - - - Ngia=taN@MN - - - Ngi. Then r.N@MN - - - MNgia
Ngip1N + - - Mgn=a and hence »MQ;=a where 7 is a superdivisor
of a. Thus Q;=a contrary to assumption. Next suppose that
LGN - - NgiaD DN - - - Mg, Then since the lattice of
dual-ideals is modular we have b=t.,N\g:N - - - NgiaMN(B\Jg;). Let
beb. If ¢:2b, then ¢;:2b and b=r.,N\gMN - - - MgiaMg; contrary to
hypothesis. Hence ¢:\Jb is a proper divisor of g; for every b&b. By
Lemma 3, ¢;\Jb is a superdivisor of a for every b&b. Hence ¢;\UbEC 1,
for every b&Db. Thus ¢;\JbDr,. But then b=r,NgN - - - MNgi21 con-
trary to assumption. Thus t.N\gM - - - Ngia>taN@MN - - - Mg
But then ts>tN\q1> - - - S>taN@ - - - MNgua>a is a finite com-
plete chain joining t, to a. By the general theory of modular lattices
(Birkhoff [1]) it follows that the quotient lattice t,/a is of finite
dimension. Since &’ Et./a we have a’ 2 p>a for some dual-ideal p and
the theorem is proved.

Now if the ascending chain condition holds in a modular lattice M,
then every element has a decomposition into irreducibles and hence,
by Theorem 3, there exist dual-ideals covering a for every ¢ not the
unit of M.
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