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1. Introduction. The relations between the 6 values of the cross 
ratio of 4 points obtained by permuting the points are well known 
(§2). The additional relations for the cross ratios of any 4 of S col-
linear points are given in §3. 5 points (or lines) in the plane deter­
mine cross ratios with the same relations (4.1). The vertices of a 
pentagon are on a conic, the sides on another, the pentagon is polar 
to itself for a third conic. The last may be without real points; in 
this case the relations between the cross ratios turn out to be equiva­
lent to the famous rule of Napier on the 5 parts of a rectangular 
spherical triangle, the cross ratios becoming the squares of the sines 
of the 5 parts. Thus the said relations are a very simple projective 
formulation of Napier's rule.1 These considerations form the contents 
of 4.2. The meets of the diagonals of a pentagon form another penta­
gon, projective to the first. Repeating the procedure, we obtain a 
bothways infinite sequence of pentagons, converging to the vertices 
and sides of the common polar triangle of the 3 above-mentioned 
conies (4.3). In §5 the relation between the generalized cross ratios of 
6 lines (or points) in the plane is determined. Finally we remark that 
the study of the pentagon in the projective plane is connected, in 
addition to that of the rectangular spherical triangle, to the study 
of the triangle in the metrical plane, that is, in elementary Euclidean 
geometry, and may be important because of its applications to the 
latter subject. 

2. Cross ratios of 4 elements in 1 dimension. A point a = (a0, a>i) 
on a line is given by a binary linear form ax=aoxQ+aiXi vanishing a t 
the point. Denoting by [a, b] the determinant of the coefficients a, b 
of two linear forms, the cross ratio of the pairs a, b and c, d is 
s= [a:b, c:d] = ([a, c]: [a, d]):([b, c]:[b, d]). Hence [c:df a:b]~s, 
[a: bt d:c] = l:s. By the relation of Ptolemy-Euler- PI ticker [a, b][c, d] 
+ [a, c][df b]+[a, d][b, c] = 0, there is [a:c, b:d] = l— s. Hence, 
[b:c, d:a] = [a:d, c:b]=t = s:(s — 1), l : s + l : * = l. lis, 1—5, and t 
may be called respectively the reciprocal, complementary, and op­
posite cross ratios to s. The 6 values s, 1 is, 1 — s, t, 1 :/, 1 — t lie, if real, 

Received by the editors November 2, 1944. 
1 And of its dual equivalent, cf, for example, R. E. Moritz, Napier's theorem for 

guadrantal triangles. Congrès International des Mathématiciens, Oslo, 1936, II, pp. 
170-171. 
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in the 6 intervals between — oo, — 1 , 0, 1/2, 1, 2, oo, one in each in­
terval. We shall denote the intervals between — oo,0, 1, < » b y l , II , 
III; II and III, I and III, I and II are interchanged respectively by 
passing to 1 is, 1 — s, t. 4 points in cyclic order determine two opposite 
cross ratios. 4 points may be ordered cyclically in 3 ways; for real 
points there is a natural cycle, with cross ratios in I I I , and two inter­
laced cycles.2 If each point is given by its coordinates, or coordinate, 
A, the cross ratio shall be denoted by A, B; C, D, for example, 
[ o o , 0 ; l , s ] = s . 3 

3. Cross ratio of 5 elements in 1 dimension. Of 5 elements, 12 
cycles and 30 cross ratios may be formed. In addition to the former re­
lations, we have 10 identities of the type [a:b, die] [blc, die] [cla, die] 
= 1. Denoting 1 : [b I c, d I e ] by a, and cyclically, we obtain â • c = 1 — 5. 
5 points are projectively determined by 2 cross ratios, say 5 and d\ 
â, • • • , ë are then 1 — 5/1 — hd, b, 1 — 5 J, d, 1 — J /1 — Id. Inverting the 
cyclic order does not change the cross ratio quintuple. To the op-
posite cycle acebd belong the opposite cross ratios l : [c :e , bid] 
= di(d— 1), and so on. Of the other 10 cycles, 5, such as ebcda, are 
bordering cycles to abcde, and 5 are bordering to acebd) the latter are 
also bordering or opposite to the former. The 12-graph giving the 
relation of bordering, having no closed 3-chains, is not the icosahedric 
graph, but has 30 closed 4-chains. To ebcda belong the cross ratios 
1 —ë, 1:5, ci(c-l), lid, 1 —â. For real points the natural cycle has 
its whole cross ratio quintuple â, • • • , e in II , the opposite in I. 
The bordering cycles have quintuples with cross ratios in II , I I I , I, 
I I I , II , their opposites in III, I, II, I, III. 

4. Cross ratios of 5 elements in 2 dimensions. 4.1. A line 
a = (a0> a\, a2) in the plane is given by its equation, that is, by a ter­
nary linear form ax = aoXorr-aiXi+a2X2 vanishing at its points. If we 
denote by [a, b, c] the determinant of the coefficients a, b, c of 3 
linear forms, and by [a, b] the meet of a and b, given by the coefficients 
of x = (x0, Xi, X2) in [x, a, b], the cross ratio of the meets [a, b], [a, c], 
[a, d], [a, e] equals [a, blc, die] = ([a, b, d]l[a, b, e])l([a, c, d] 

2 The same holds for complex points, the corresponding regions being bounded by 
circular arcs through 1/2 ± (—3)1/2/2. For example, the natural cyclic order (of 
oo f 0, 1,5) is characterized by | s | > 1 , | s | > | s — 1 | . 

3 The fractional notation a/b would lead to the typographically less convenient 
symbol 

ca . 
which reflects the group properties of the cross ratio and has been proposed about 50 
years ago. 
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: [a, c, e])y as is immediately verified by assuming a —(1, 0, 0). In 
addition to the relations of §1, we have the Menelaos-Möbius identity 
[a, bic, d:e][b, cla, die][c, alb, die] = l, with the same consequences 
as in §2. This is also clear by considering the lines as elements on 
their common conic, say (1, u, u2), the cross ratio of 4 lines on the 
fifth being equal to that determined on any fixed tangent (1, 0, 0), 
that is, to that of the meets (0, u, — l).4 

4.2. A pentagon consists of 5 sides a, b, c, d, e and 5 vertices [a, 6], 
[by c], [c, d], [dj e], [e, a] in cyclic order. Let Co be the mean conic, 
that is, the one for which a and c are conjugate, and so on cyclically; 
then the polarity at Co interchanges every side a and its opposite 
vertex [c, d], and also the conies C\ and C_i on which the sides and 
the vertices are. Let A and A' be the meets of Co and a, and 
[A, A'; [e, a], [a, &]]=#' . Give to A, A', and [e, a] the inhomogene-
ous coordinates oo, 0, and 1, then the coordinates of [a, b]y [ay c], 
[a, d] will be a', — 1 , — a', so â = l : [a, blc> die] = [af, — 1; 1, — a'] 
= —(a' — l) 2 :4a ' . For â in I or I I I , a' is real; for â in II , a' is purely 
imaginary. Hence Co has real points except for natural cycles. For 
the latter, throw one of the lines to infinity; an ellipse round the 
opposite vertex would cut its sides, so that Co cannot have real points. 
If the pentagon is on the plane at infinity of 3-space, Co may be 
the isotropic conic; then the corresponding spherical pentagon will 
have quadrantal diagonals, that is of arc 7r:2. The sides, or diagonal 
angles, are given by [i, —i; 0, tan a]=a', whence (i — tan a) 
l ( i + t a n a) = a ' , d = tan2 al (1 + t a n 2 a) =sin2 a; they are also the parts 
of any of the rectangular spherical triangles abc, bed, and so on (for 
example, abc has the sides irll—a, /3, irll—y and the angles S, e), 
the Napierian cycle becoming ayefib. From âc — \ — h we obtain 
sin a sin 7 = cos ]3 (the sign, for the usual orientation of angles, being 
verified for small angles). The opposite of sin2 being —tan2, we have 
cot a cot j8 = cos ô, the second equation of Napier.5 

4.3. To the opposite line cycle acebd of a pentagon belongs the same 
Ci, but other vertices on a conic C3, and a new mean conic C2. The 
opposite vertex cycle on C3 leads to C5 and C4, and so on. We obtain 

4 The relations between the cross ratios of w+3 elements in n>2 dimensions ob­
tained by joining any 4 of them to the linear variety of the others, that is, between 
their mutual projective coordinates, can also be derived from identities of the types 
Menelaos and Ptolemy, and are therefore the same as for rc+3 elements in 1 dimen­
sion. This can, as above, be otherwise obtained, together with the natural cyclic 
order, by use of the norm curve through the elements. 

5 Taking the mean conic as the conic of the correspondence of Hesse, we see that 
the cross ratio quintuples are also connected with the mutual cross ratios of 5 pairs 
of points on a line, which are harmonic to each other in cyclic order. 
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a bothways infinite sequence of cycles, determined by any of its 
cycles, and conies Cm for every integer m. As the sides and vertices 
of a pentagon have equal cross ratios, the same cross ratios belong 
to all cycles of the sequence; consecutive pentagons have opposite 
cross ratios, and every pentagon is projective to the next but one. 
The projectivity P between both pentagons transforms every line 
cycle or point cycle into the next, and Cm into CTO+4. The polarity a t Co 
inverts the whole sequence and P; the fixed triangle P of P is, there­
fore, a polar triangle of Co (and of every C2m). We may choose P as 
fundamental triangle and Co as ## = 0; then ad~0, bd = 0, so that d 
is proportional to [a, b]9 and P transforms a = (a&) to a' = (\kdk) which 
connects [6, d] and [c, e]. Hence [af, ft, d] = 0, [a', b] [a, b] = 0, whence 
by a formula of Lagrange a'a'b2 — a'b'ab = 0', likewise b'b'a2 — b'a-ab 
= 0, so a/a-&2 = &/6-a2. We see that a'a:aa = q is the same for 
a, • • • , e, so that &, given by a 'a — gaa = 0, and hence or similarly 
every Czm+u has also P as polar triangle. X and the cross ratio quin­
tuple determine each other. By Poncelet's closure theorem, to a se­
quence of conies there belong one-dimensionally many ( <x>l) sequences 
of pentagons. For a sequence of pentagons consisting of natural cycles 
and their opposites (as in case of the quadrantal pentagon), there are 
mean conies without real points, so the vertices and sides of P are 
real; if |X0| < |X i | •< |Xa|, the sides of the pentagons converge for 
m—»+oo to (0, 0, 1), the vertices to (1, 0, 0), and vice versa for 
w—> — oo. Otherwise, that is, for a sequence of cycles bordering to 
natural and their opposites, only one vertex v and side s of P are real, 
for CLi and C3 have exactly 2 real meets, as is easily seen for particular 
cases and therefore generally true, a change in the reality of P being 
only possible for touching CLi and G, whereas touching conies have 
no closure polygons of Poncelet. P being projective to a transforma­
tion of similitude, the vertices of the pentagons converge to v, while 
the sides approach v without converging to any line through v; vice 
versa for 5. The limit points (1, 0, 0), (0, 0, 1), v are roots of cubic 
equations, which might lead to an approximative construction of the 
roots of cubic equations. Among the projectivities belonging to the 
12 point cycles of a given line cycle it is easy to find pairs whose 
product has a line of fixed points. 

5. Cross ratios of 6 elements in 2 dimensions. The generalized 
cross ratio [a:b, c:d, e:f]~[a, c:d, e:f]:[b, c:d, elf]9 can be in 3 

6 For general quantics cf. my papers The hypersurface cross ratio, and A 5-curve 
theorem generalizing the theorem of Carnot, Bull. Amer. Math. Soc. vol. 51 (1945) 
pp. 976-984, 972-975. 
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ways considered as ratio of ordinary cross ratios; hence for each of 
3 given pairs of lines the ratio of the cross ratios determined on its 
lines by the two other pairs is the same. If the third pair (of points) 
is I, / , then iln/2 of the (generalized) cross ratio is the difference of 
the angles a t which one pair is seen from the points of the other. The 
cross ratio is 1 if, and only if, the 6 points (lines) are on the same 
conic—in particular, if two pairs are collinear (concurrent). There are 
again 30 cross ratios. The multiplicative relations of §§2—3 subsist 
and allow us to obtain the other values from â=[alb, eld, elf], 
h=[bic, die, alf], • • • , e=*[eia, bic, dlf]. As 6 lines are projec-
tively determined by 4 constants, there must be a relation between 
â, - • • , ë. Indeed, if a ' = l : [ƒ, alb, eld], a " = l : [e, alb, eld], and so 
on, then a', • • • , e' and a", • • • , e" are cross ratio quintuples as in 
§§3-4, and â, • • • , I equal ((1 -& ' ) : (1 - & ' d ' ) ) : ( ( l - & " ) : (1-&"<*"))• 
b'lb'1, (\-b'd')i{\-b"d"), d'ld", {{\-d')i{\-b'd'))i{(\-d") 
:(1-&"<*")). By b' = W',d' = M"vtzhzYz\-Ub"d"~c(l-b"d,f), 
i'y"==(l-c):(5J-4By(l-5&'0^ 
and similarly d" = (1 — ce) l (J— ce). Multiplying and equating, we get 
(1 — âc)(1 — ce)(c — 5d) = (c — 1)(5 — âc)(d — ce), c divides the difference 
of both sides, so finally âhcdë — âcë—cëh — êhd — idâ — dâc-\-âc+cë 
+ ëh+hd+dâ—1=0, an identity between the determinants of a 
6, 3-matrix. Conversely, to any a, • • • , ë = 0, 1 with h = ac, and so 
on, and fulfilling the last equation there belong certain b', d', b", d'\ 
and 6 lines not on a conic, no 3 of which are concurrent. 
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