SOME INVARIANTS OF CERTAIN PAIRS
OF HYPERSURFACES

CHUAN-CHIH HSIUNG

Introduction. It is known [8, 9]! that if two surfaces in ordinary
space have a common tangent plane at an ordinary point, then the
ratio of their total curvatures at this point is a projective invariant,
and the theorem holds true similarly for hyperspaces.? In connection
with this theorem and the investigation of Bouton [2], Buzano [3]
and Bompiani [1] have shown the existence of a projective invariant,
together with metric and projective characterizations, determined by
the neighborhood of the second order of two surfaces S, S* at two
ordinary points O, O* in ordinary space under the conditions that
the tangent planes of the surfaces S, S* at the points O, O* be distinct
and have OO* for the common line. Furthermore, the other case in
which the tangent planes of the surfaces S, S* at the points O, O* are
coincident? has been considered in recent papers of the author [6, 7].

It is the purpose of the present paper to generalize the results of
the two cases mentioned above.

Let V,-1, V51 be two hypersurfaces in a space S, of 7 dimensions,
and £,-1, .51 the tangent hyperplanes of the hypersurfaces V,_1, VX
at two ordinary points O, O*. For the subsequent discussion it is con-
venient to assume in Chapter I that the tangent hyperplanes ¢,_1, £.*4
are coincident. We can (§1), as in ordinary space, determine a pro-
jective invariant by the neighborhood of the second order of the hy-
persurfaces V,_1, V.X: at the points O, O*; and the projective and
metric characterizations of this invariant are given in the next two
sections.

Chapter Il treats of the case in which the tangent hyperplanes
b, ¥y are distinct, and the common tangent flat space f,.2 of
.1, X1 contains the line O0*. We first (§4) show by analysis the
existence of two projective invariants determined by the neighbor-
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1 Numbers in brackets refer to the bibliography at the end of the paper.

* The simple projective characterizations of this invariant were given by C. Segre
[10] for two plane curves and by P. Buzano [4] for two surfaces in space S, (1n>2).
On the other hand, A. Terracini [11] also interpreted projectively this invariant by
virtue of the conception of density of dualistic correspondences.

3 It should be noted that for two plane curves having a common tangent at two
ordinary points no projective invariant can be determined by the neighborhood of
the second order of the two curves at these points. See my paper [5].
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hood of the second order of the hypersurfaces V,-1, VX1 at the points
0, 0*; and then (§§5, 6) give them simple projective and metric char-
acterizations. From the fact that one of the two invariants is reduced
to 1 when the immersed space S, is of three dimensions, it follows
that our result in this chapter stands actually for a generalization of
that of Buzano and Bompiani.

CHAPTER I. TWO HYPERSURFACES WITH COMMON TANGENT
HYPERPLANE AT TWO ORDINARY POINTS

1. Derivation of an invariant. Let V,_;, V%, be two hypersurfaces
in a space S, of # dimensions with common tangent hyperplane ¢,

at two ordinary points O, O*. Let 3, - - - , ¥»41 denote the homogene-
ous projective coordinates of a point in the space S,. If we choose the
points O, O* to be the vertices (1,0, - - -, 0), (0, - - -, 0, 1, 0) of the

system of reference, and the common tangent hyperplane ¢,_1 to be
the coordinate hyperplane x,,1=0 of the system, then the power se-
ries expansions of the hypersurfaces V,—;, VX in the neighborhood
of the points O, O* may be written in the form

Xni1 L3 Xi Xk
M Vasi —b= 3l — —
X1 k=2 X1 Xy
—~1
* Xnt1 e X Xk
(2) Va1t = > Mmip— — 4.
Xn §, k=l Xn Xn

In order to find a projective invariant of the hypersurfaces V,_,
VX, at the points O, O*, we have to consider the most general projec-
tive transformation of coordinates which shall leave the points O, O*
and the hyperplane #,-; unchanged:

n+1

x;=2a¢,x: G=1-.--+,mn),
(3) re=1
Xng1 = an+1,n+1xr’|+1y
where
(4) Qg1 = = @y = 0, aln="'=an~l,n=0'
121 Q23 MR 2 .|
(5) D= 32 ags *°* Ggn-1 0.

Ap—1,2 Gn-1,3" " * Qp-1,n-1

The effect of this transformation on equations (1), (2) is to produce
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two other equations of the same form whose coefficients, indicated by
accents, are given by the formulas

”»
’ .
allaw+1.u+llo‘k = E ariaakln (’y k= 2, ) ”))
LY ]
© A
CnnGntimtiMik = D GriGaiflirs (hk=1,--,n—1).
r,8ml

From equations (4), (5), (6) it is easily seen that the determinants

laa Doz lsn m Mz Miaoa
lsa lss- -+ lsa ma1 Ma22 o Mop—1

L = N M = ’
lna luse+* lan Mp—1,1 Mp—-1,2° * * Mp_1,n—1

and their transformed ones L/, M’ are connected by the relations

n—1 n—1 ’ 2 2
011 Gaprapr L = au D L,

(7) n—1 n—1

’ 2 2
Aun an+1,n+1M = auD M.

Further elimination of a;; from equations (6), (7) shows immediately
that the quantity

L miy (n+1)/3
® I= —( )
M\l

is a projective invariant determined by the mneighborhood of the second
order of the hypersurfaces V.1, VJXa at the points O, O*.

2. A projective characterization of the invariant I. Let the polar
spaces of the line OO* with respect to the asymptotic hypercones of
the hypersurfaces Va1, VX at the points O, O* be respectively de-
noted by t,—2, £*2, which determine a space ¢,—3 of #—3 dimensions
in the common tangent hyperplane %,,1=0. If the n—2 vertices,
other than O and O, of the system of reference in the hyperplane
%Za+1=0 be chosen in the space ¢,_s, then the invariant I may be re-
duced to

Low /tm1\ (=13
(9) I = nn ( 11) ,
Mll lrm
where La,, My are the minors of /.., my in the determinants L, M
respectively.

For the purpose of finding a projective characterization of the in-
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variant I we first observe the space S; determined by the vertices
1,90,---,0),(0,---,0,1,0), (0,---,0,1) and any one, say for
instance 0:(0, 1, 0, - - -, 0), of the system of reference in the space
ta—s. The space S; intersects the hypersurfaces V,_1, Vot in two sur-
faces S, S*. Since the tangent planes of the surfaces S, S* at the points
O, O* are coincident we have a projective invariant, denoted by J,

(10) J = l’—’-(’”“)m,

Mmag lnn

whose projective characterization has been obtained [6].

Let Q (Q*) be any quadric in the space Sy which has 00; (0*0,),
00* (0O0*) for generators and whose curve of intersection with the
element of the second order of the surface S (S*) at the point O (0*)
has a cusp at O (O*). If the cone projecting from the point Os the
curve of intersection of the two quadrics Q, Q* be tangent to the com-
mon tangent plane 00*Q; along a line through the point Os, then this
line must be one of the lines (cf. [6])

My1mas\ M4
za £ (& 1)1/2( ) 2 =0,
(11) 22nn !
Xg = ¢ " = Xp1 = Xpy1 = 0,

We may now uniquely determine a point P on the line 00* such that
the cross ratio of the three points O, O*, P, and the intersection of the
line (11) with OO* is equal to J¥4, On the other hand, the asymptotic
hypercones of the hypersurfaces V,.1, V.¥. at the points O, O* de-
termine a pencil of hyperquadrics in the hyperplane x.41=0, among
which there exist # hypercones, two of them being the asymptotic
hypercones. The line OO* intersects each of the other #—2 hypercones
in a pair of points. Let Q; (1=1, - - - , n—2) be any one of each pair
of these points and D; the cross ratio of the four points O, O*, Q;, P
on the line OO*, then we may easily show that the invariant I can be
expressed in terms of the n—2 cross ratios Dy, Ds, - - + , Dy_s as follows:

(12) I = (& 1)™*DD;- - - Do)

3. A metric characterization of the invariant I. It is deemed worth
while to give in this section a simple metric characterization of the
invariant I. For this purpose we choose an orthogonal Cartesian co-
ordinate system in such a way that the point O be the origin, the
line OO* be the X, ;-axis, and the common tangent hyperplane ¢a—1
be the coordinate hyperplane X,=0. Then the power series expan-



576 C. C. HSIUNG [August

sions of the hypersurfaces V,.1, VX in the neighborhood of the
points O, O* may be put into the form

n—1
(13) Vao1: Xn = ENkXiXk + e,
1, k=1
* n—2 n—2
Vﬂ_lg Xn = Z MikXiXk + 2 E Mi.n—-lXi(Xn—-l - h)
(14) i k=1 i1

+ an—l,n—l(Xn—-l - h)2 + tt

where & is the distance between the points O, O*.

Let yo, ¥1, * * *, ¥ be the homogeneous coordinates of a point de-
fined by the formulas
(15) X"=y"/y0 (7'= 11"'7”))

and let us consider the most general projective transformation of co-
ordinates which shall leave the point O and the common tangent
hyperplane ¢,-; invariant, and change the point O* into the vertex
©, ---,0,1,0) of the new coordinate system:

Yo = Z doiyi',

=0

16 id
( ) y1’=2airyr( (i=11"'»"'—1)y
r=1
Yn = annyn’ ’

where
(17) Qa1 = *** = @pg,a-1 = 0, Gn_1,n—1 = hGon-1,

an a1z st Q1p—2

a a s Ao p—
(18) A= 21 22 2,n—2 0.

An—2,1 Qn—2,2"° " " Opn—2,n-2

By transformations (15) and (16), equations (13), (14) shall be car-
ried into two others of the form

Y nt yi v
(19) Vaei: === 2 pa— —+ -,
0 i, kenl Yo 0
’ n—2 ’ ’
n yz yk
(20) V:_]_: 4 = Z qix )

4 ’ ’
Yn—1 i, k=0 Yn—1 Yn-1

where the coefficients pix, gix are given by the equations:
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n—1

(21) B000nndi = Z GriGekNre GG, k=1---,8n—1);
7,8=1
n—2
(22) CpnG0,n—19ix = Z OlriOlgkfhrs ('iy k= 01 11 cre, B = 2)5
7,8m0
= — haoo, ai = 0, Qoi = Gn_1,6 — hao;, Qi = Qyi,

o0
(23) .
Moo = Ma—1,n—1y Mor = Mr0 = Mn—1,r = Mrn—1 (1, r=1.-.,n— 2)-

Let

A\ Aig <t Myt M11 M1z t ot M1,n—1
a1 Nog SRI PR M21 Mag vt M2,n—1

P = R WV o= ,
>\n—-1,1 )\n—1,2 st >‘n—1.n—-1 Mn—1,1 Mn—1,2 * * ° Mp—1,2—1
pu P12 P qoo Qo1 * " Qo2
j 258 P22 Paaa q10 qir * Qin—2

P = ’ Q = ’
pn—l.l pn—1.2 AR pn—l,n—l q»—2,0 QN—-2,1 tt q»—2,n—2

then from equations (17), (18), (21), (22), (23) we obtain

(24) Gy Gan P = GpeynD'®,  Gom GomaQ = K oA
Making use of the result obtained in §1 and observing equations

(19), (20) we see that the projective invariant I associated with the

hypersurfaces V,—1, V.t at the points O, O* is

P (n+1)/8
(25) I = _(___q""_) .
Q Pn—l,n—l

Furthermore, substituting (21), (22), (24) in (25) and reducing by
equations (17) it follows that the invariant I now takes the form

B [l 1y DI
(26) I = ._<__11‘_1_) .
v x10—1,7»—1

Let K, K* be the curvatures of the hypersurfaces V., VX, at
the points O, O*; and R, R* the curvatures at the points O, O* of the
plane sections of the hypersurfaces V,—;, V,X; made by the plane of
the line OO* and the normal to the common tangent hyperplane £,
at any point on the line OO*. By a known formula it is easy to



578 C. C. HSIUNG [August

demonstrate that
@n K/K* = /¥, R/R* = N—1,0—1/n—1,n—1,
and therefore that

28 I=—(—
@8) E*\ R

Hence we have the following theorem.

K R*)(n+1)ls

THEOREM. Let V1, V.51 be two hypersurfaces in a space S, of n
dimensions having a common tangent hyperplane t._y at two ordinary
point O, O*; K, K* the curvatures of the hypersurfaces Va1, VX1 at
the points O, O*; and R, R* the curvatures at the points O, O* of the
plane sections of the hypersurfaces Va1, V.1 made by the plane of the
line OO* and the normal to the common tangent hyperplane t,—; at any
point on the line OO*. Then (K/K*)(R*/R)(»+V13 is a projective in-
variant associated with the hypersurfaces Va1, Vi¥1 at the poinis O, O*.

CHAPTER II. TWO HYPERSURFACES WITH DISTINCT TANGENT
HYPERPLANES AT TWO ORDINARY POINTS

4. Derivation of invariants. Let V,;, V.5; be two hypersurfaces
in a space S, of # dimensions such that the tangent hyperplanes
tn-1, ta1 at two ordinary points O, O* are distinct, and the common
tangent flat space ¢,—3 of £,—, £.51 contains the line OO*. If we choose
the points O, O* to be the vertices (0,1,0, - --,0), (0, ---,0,1,0)
of a homogeneous projective coordinate system of reference, and the
tangent hyperplanes #,-1, £,5; to be the coordinate hyperplanes x; =0,
xn+1=0 respectively, then the power series expansions of the hyper-
surfaces V,-1, VX, in the neighborhood of the points O, O* may be
written in the form

%y n+1 X Xk

(29) Vast —— = D bgg — —+ -+,
X2 i, k=3 Xo X2
* Xnyr1 xXi X

(30) Va1t = D Migpg— —+ - .
Xn 3, k=1 Xn Xn

Considering the most general projective transformation of co-
ordinates which shall leave the points O, O* and the hyperplanes ¢,_,
t*, unchanged, we may easily show as in §1 that the quantities

(31) I LMlnnmn J <i[) n—3 ( Ln+1,n+1m22)n+1
= —-———— = — ———
LypinaiMu Ml


Vn-.ll
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are projective invariants determined by the meighborhood of the second
order of the hypersurfaces Va1, Vati at the points O, O*, where Lni1,n+1,
My, are respectively the minors of lny1,n1, M1 in the determinants

lss I3 e ls.n+1 mi mi2 tc My

l‘a lll ... l4 ntl m m e m
l: ’ 21 22 2,n—1
M =

? ’
e e s o e e e e e e e

Ini1s Dorra s o v bagini Mu—1,1 Ma_1,2"* * * Ma_1,n-1
and L', M', L 1,n11, Mi1 are denoted by similar expressions.

5. Projective characterizations of the invariants I, J. By suitable
choice of the system of reference the invariants I, J of equa-
tions (31) can be simplified. In fact, if we choose #—1 vertices of
the system in the common tangent flat space ¢,—s, and the other two
On41(0, - - -, 0,1), 0:(1, 0, - - -, 0) respectively on the polars ¢, t* of
the flat space t,—2 with respect to the asymptotic hypercones of the
hypersurfaces V-1, VX at the points O, O*, the invariants I, J then
take the simple form

I= lnnln+1,n+1m11m221

(32) 7= (Lu+1,n+1)4< M1 )"—3 (mu)"'“
Mll ln+1.n+1 l"” '
It should be noticed that the invariant J is reduced to 1 as n=3.
The polars ¢, t* determine a space Ss, which intersects the hyper-
surfaces V,_1, VX in two surfaces .S, S*. These two surfaces .S, S*
are evidently in the class considered by Buzano and Bompiani, and

the corresponding invariant may be easily found from Bompiani's

note [1] to coincide just with the invariant I. Thus we reach the
conclusion:

The invariant I associated with the hypersurfaces Va—1, Vit at the
points O, O* is the invariant of Buzano at the points O, O* of the surfaces

S, S* in which the hypersurfaces Va1, Vi1 are intersected by the space
S3 determined by the polars t, t*.

To characterize projectively the other invariant J we consider any
hyperplane 7, through the common tangent flat space £u—s:

(33) Znt1 = aXy (0‘ # 0)»

which intersects the hypersurfaces V,-1, V%1 in two hypersurfaces
Va-e, VX3 of n—2 dimensions. Since these two hypersurfaces Vs,
Va2 have a common tangent hyperplane at the points O, O* we may
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determine an invariant, denoted by I,, as in §1:

(34) I = o2(n-3)/3 Lat1,nt1 (mn)"/'.
My

On the other hand, it is useful to consider the hypercones
C, C* projecting respectively from the vertices O:(1, O, - - -, 0),
0.4+1(0, - - -, 0, 1) the asymptotic hypercones at the points 0, O*
of the hypersurfaces V,;, VX1 These two hypercones C, C* deter-
mine a pencil of hyperquadrics in the space S,, among which there
exist #—1 hypercones, two of them being C, C*. The line 0,0,11
intersects each of the other #—3 hypercones in a pair of points. Let
Qi (1=1, - - -, n—23) be any one of each pair of these points, P the
point of intersection of the line 010,41 with the hyperplane r,, and
D; the cross ratio of the four points Oy, Oy, Qi, P on the line 010,44
then it follows that the invariant J can be expressed in terms of the
invariant I, and the n—3 cross ratios Dy, Dy, - - -, D,_5 as follows:

lﬂﬂ

(35) J =IDDs- -+ Duy)’.

6. Metric characterizations of the invariants I, J. For the purpose
of finding simple metric characterizations of the invariants I, J, we
choose an orthogonal Cartesian coordinate system in such a way that
the point O is the origin, the line OO* is the X,_;-axis, and the tan-
gent hyperplane ¢,; is the coordinate hyperplane X;=0. Then the
power series expansions of the hypersurfaces V,_1, V£, in the neigh-
borhood of the points O, O* may be put into the form

(36) Var: Xi= 2 MXXp+---,

1, k=2

n—2 n—2
Vot X, = pX1+ 2 paXiXs 4 22 pinaXi(Xao1 — k)
(37) §, k==l [ 8

+ I‘n—I.n—-l(Xn—-l - h)2 + .-,

where & is the distance between the points O, 0*, and p=cot w, w
being the angle of the tangent hyperplanes ¢,_, t.%1.

In order to express the two invariants I, J in terms of the coeffi-
cients of expansions (36), (37) we have first as in §3 to consider the
homogeneous coordinates ¥o, ¥1, + + -, ¥» of a point defined by for-
mulas (15) and the most general projective transformation of coor-
dinates, which shall leave the point O and the tangent hyperplane
#a-1 invariant and carry the point O* and the tangent hyperplane
t.*, into the vertex (0, - - -, 0, 1, 0) and the coordinate hyperplane
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¥+=0 of the new coordinate system respectively. An easy calculation,
which shall be omitted here, suffices to demonstrate the result as
follows:

i3\ 0 n—1Mn—1,n— T\ "3 q>7mﬂn— ;— ntl
(38) I=m e, = (——) (—————‘——1> ,
(I)rm\I,ll P ‘I’llxn-—l.n—-l

where ®,,, ¥1; denote respectively the minors of N\u,, pi1 in the de-
terminants

Nza Nag* - - Aan K11 M1zttt Blael

Nz Naz* - - N3 M1 Mozttt Mo
& = ", w= "

Nnz Aas* * * Aan Ma—1,1 Mn—1,2° ° * Mp—1,n—1

Finally, we shall make use of the normals ON, ON* at the point O
of the common tangent flat space f,— in the tangent hyperplanes
b1, tat1. Let K, K3* be respectively the curvatures at the points
0, O* of the plane sections of the hypersurfaces V,—;, V.5t made by
the planes OO*N*, OO*N. Further, let K,, K* be the curvatures of
the hypersurfaces V,—1, V2%, at the points O, O*; and K, K% the
curvatures at the points O, O* of the hypersurfaces V,_2, V.5, of
n—2 dimensions in which the tangent hyperplanes ¢.* 4, f,_; intersect
the hypersurfaces Va_1, V,%i respectively. Then

K, = 2»—14), K: - 2n—-1(1 + #2)—(n+1)/2\1,,

*

(39) Kn——-l = 2n—-2(1 + #2)(1!—2)/24),"" Kn—-l - 2"_‘2‘1’111

K2 =2(1 4+ p¥)Y %11, K;= 2pn—1,n—1,

and hence we arrive at the following metric characterizations of the
invariants I, J:

0) I nt K.KXKi:K3* (Kn*)"‘a (Kn-le*)”“
K. KX.K))

’ =
16 K,...lK,.*_1 sin2(n—1g
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