
ON THE CAPACITY OF A CONDENSER 

G. SZEGÖ 

1. Introduction, (a) Any student of electric phenomena is familiar 
with the Leyden jar. In its simplest form it consists of two circular 
cylinders, with a common axis, charged with electricity. If there is a 
difference in the potentials of the cylinders, then electric energy, 
which can be recovered at any time in the form of electric discharge, 
is stored up in the jar. 

Let us denote the radii of the cylinders by a and b,a<b. Disregard­
ing the effect of the ends, the potential u of the electric field between 
the cylinders depends only on the distance r from the axis, and so it 
must have the form 

(1) u = A log r + B% 

where A and B are constants. On the cylinders, which are equipo-
tential surfaces, we have 

(2) ua = A log a + B, Ub = A log b + B. 

The density dra of the charge on the cylinder r = a is 

€ /du\ eA 
(3) , . _ f ) = - T - ' 

where e denotes the dielectric constant of the field. The density <r& of 
the charge on the other cylinder will be 

e /du\ eA 
(4) c r 6 B B _ ( _ ) « 

4cir\dr/r~b 4?rô 
Hence the charge on the cylinders, per unit length, will be 2iracra 

= —eA/2 and 27r6<r6 = €-4/2, respectively. On the other hand the po­
tential difference is 

(5) Mb — ua == A log (b/a). 

The ratio 

charge (per unit length) €-4/2 e 
(6) 

potential difference A log (b/a) 2 log (b/a) 
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is called the capacity (per unit length) of the jar. I t measures the 
charge which is necessary in order to produce the potential differ­
ence 1. 

(b) Another very elementary problem of electrostatics, related to 
the Leyden jar, is that of a spherical condenser. We consider two con­
centric, thin metallic spheres with radii a and &, respectively, a <b. 
The potential u of the field between these spheres depends only on 
the distance r from the center; hence it must have the form 

(7) u - A It + B, 

where A and B are constants. On the spheres, which are equipotential 
surfaces, we have 

(8) ua - A/a + B, ub~ Alb + B. 

The densities of the charges are in this case 

e /du\ eA c /du\ eA 
(9) , a » ( _ ) » , < T 6 = a _ ( _ ) «. , 

so that the total charges on the single spheres are ± eA. The potential 
difference is 

(10) » . - ub = A(a~l - b-1). 

The ratio 

charge eA e 
(ID 

potential difference A (arl — b"1) a~* — b"1 

is called the capacity of the spherical condenser. In the limiting case 
when &—* oo, we find for the capacity the expression ea. Hence assum­
ing € = 1, we find that the capacity of a sphere "with respect to an 
infinitely large sphere" is equal to the radius of the sphere. In general, 
the capacity has the dimension of a length. 

2. Capacity of a condenser, (a) We consider two closed surfaces 
so and Si such that Si is contained in the interior of s0. We say that So 
and Si form a "condenser" and we refer to the closed set of points 
exterior to Si and interior to So as the "field." There is a point-function 
u(p)f harmonic in the field, such that u(p)~0 on So and u(p) = l on s\. 
This function is uniquely determined. We call it the potential f unction 
of the condenser. I t is the potential of certain electric charges, properly 
distributed on the surfaces So and si. 

The density of this charge is (assuming that the dielectric constant 
is 1) 
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1 du 
(1) , 

47T dn 

where n is the normal directed into the interior of the field, that is, 
n is the interior normal on sQ and the exterior one on si. Hence the 
total charges will be 

l r rdu l r rdu 
(2) ~T\ I r^ and ~z~ l I r 4 5 ' 

4TT J J on \TÏ J J on 
respectively, the positive directions of the normals being determined 
as above. 

Since u is a harmonic function, these integrals are equal, except 
their sign. We form generally 

1 r rdu 
(3) c = s r T^ 

4x J J on 
where the integration is extended over an arbitrary closed surface ly­
ing in the interior of s0 and containing $%; the normal is the interior 
one. This integral is independent of the surface of the integration. I t 
is a positive quantity, called the capacity of the condenser. The charges 
(2) on So and Si are — C and + C, respectively. The potential difference 
is in this case 1 so that this definition is a generalization of that given 
in 1(b). 

(b) According to the theory of harmonic functions the potential 
function u(p) and the capacity C of the condenser can also be obtained 
in the following way. We consider an arbitrary function \[/(p) with 
continuous derivatives, defined in the field such that ^ = 0 o n s0and 
^ = 1 on si. We form Dirichlet's integral 

(4) WW = £ ƒ ƒ ƒ (grad *) W , 

where the integration is extended over the field. Then the minimum 
of W(\l/) for the set of all functions mentioned is attained when 
^(£) = w(£), and the minimum of Wty) is equal to C. (See Kellogg 
[8, p . 279].*) 

An alternate form of the integral W(\{/) is 

(5) WW = ƒ ƒ ƒ *pdV + ƒ ƒ fadS, 

where 
1 Numbers in brackets refer to the Bibliography at the end of this paper. 
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A* 1 # 
(6) p = ; <T = 

4T 47T dn 

and the second integral in (5) is extended over so+Si. The normal is 
directed into the interior of the field. The quantities (6) are the vol­
ume and surface density of a distribution of charges to which the 
potential \[/ corresponds. Here we assume that yp has continuous second 
derivatives. (See Kellogg [8, p. 278].) The expression W(\(/)/2 can be 
interpreted as the potential energy of this distribution. 

In the next sections we consider two important limiting cases of 
condensers. 

3. Green's function of the exterior of a surface, (a) Let s be a closed 
surface. Green's function G(p) of the exterior of 5 (with respect to the 
point of infinity) is characterized by the following properties: 

1. G(p) is a harmonic function at every finite point in the exterior 
of s. 

2. If r denotes the distance of p from a fixed point, limr.*oo rG(p) 
exists. 

3. G(p) = l Up is on s. 
The function G is uniquely determined. 

We recognize that this function is the limit of the potential function 
up(p) of a condenser made up by Si = s and by a sphere s0 with radius 
p as p—» oo. The field is in this case the exterior of 5. The capacity C 
of this condenser can be represented as in §2 (3), that is, 

1 r r dG 
(1) C - - I — dS, 

47r*/ J on 

where the integration is extended over an arbitrary surface contain­
ing 5. 

In what follows, we refer to the function G(p) and the constant C 
as the potential function and the capacity of the surface s (of the solid 
bounded by s, of the conductor bounded by s), respectively. The func­
tion G(p) is the potential of certain electric charges on 5 which are in 
electrostatic equilibrium because 5 is, in view of property 3, an equi-
potential surface. (Kellogg [8, p. 176].) The distribution of these 
charges is called the natural distribution. This is in general an inhomo-
geneous distribution. (In the case of a sphere it is homogeneous.) 

The potential function just defined should not be confused with the 
potential of homogeneous charges on 5. Also we make a clear distinc­
tion between the potential function and capacity of a condenser and 
of a surface (solid, conductor). 
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(b) Introducing polar coordinates r, 0, <j> for the variable point p, 
we have for large r 

(2) G(̂ ) = — — + _ _ + . . . + _ _ + . . . , 

where F«(0, 0) is a surface harmonic of order n. In view of the defini­
tion (1), we see that YQ(6, <f>) must be equal to C Hence the capacity 
of a surface is the first coefficient in the expansion of the potential 
function G(p) for large r. 

An alternate definition of the potential function and capacity, simi­
lar to that in 2 (b), is possible. 

Another characterization of the capacity and the natural distribu­
tion is the following (Riemann-Weber [28, p. 772]). We consider all 
positive charges on 5 with the total charge 1, defined by the density 
function /x (p)fp on s: 

(3) M(*)£0, ff»(p)dS-l. 

Then the integral 

(4) ffff*^»^ 
where pi and p2 run independently on s (rn is the distance of pi 
from p2, dSi and d£2 are the area elements at pi and p%, respectively), 
will be a minimum if ix(p) is the density of the natural distribution. 
The minimum of this integral is 1/C. 

For certain reasons which will become clear later, we call the ca­
pacity C also the outer radius of the surface 5 (of the solid bounded 
by s). In the case of a sphere it coincides with the ordinary radius. 

4. Green's function of the interior of a surface, (a) Let s be a closed 
surface, q an arbitrary fixed point in the interior of s. Green's function 
G(P'i q) °f the interior of € with respect to q is characterized by the 
following properties: 

1. G(p; q) is a harmonic function in the interior of 5 except at q. 
2. If r denotes the distance of p from qf we have G(p; q)~l/r 

—H(p; q)t where H(p; q) is a harmonic function of p throughout the 
interior of 5. 

3. G = 0 if p is on s. 
The function G is uniquely determined by 5 and q. 

We show that Green's function is closely related to the potential 
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function of a properly defined condenser. We denote the value of H 
at the point p = q by H0; since H=l/r on s, we see that ü 0 > 0 and 
Hô"1 is a mean-value of the distances r of the points of 5 from q. 

Let c be a positive number, eHo < 1. On the sphere 

(1) r « € - tfo*2 

we have 

(2) G « l/(€ - Hoe") -Ho + 0(€) - 1/6 + 0(e), 

where the term 0(e) divided by € remains bounded as e—»0. Let we(£) 
be the potential function of the condenser formed by the sphere (1) 
and the surface 5. Then the harmonic function 

(3) ue(p)/e-G(p;q) 

is 0 on 5 and equal to 1/e — G = 0(e) on the sphere (1). Hence by the 
maximum-minimum principle for harmonic functions we have 

(4) ut(fi)/e-G(p;q)=0(t) 

in the whole condenser. Consequently 

(5) lim («.(ƒ)/«) - G(p; q) 

at every point p in the interior of s different from q. 
(b) We call the positive constant Hf1 the inner radius of s with 

respect to the point q. As pointed out before, the inner radius is a 
certain mean-value of the distances of the points of s from g. In the 
case of a sphere it coincides with the ordinary radius. 

If we subject the surface s to an inversion (r' = l / r ) with respect 
to qf it will be transformed into a surface s\ I t can be shown (cf. 
Kellogg [8, p. 232]) that the exterior radius of s' is the reciprocal of 
the inner radius of 5 with respect to q. 

5. Generalization. The concept of the capacity or outer radius of a 
surface (of a solid bounded by a surface) can be generalized. Let us 
consider a finite number of mutually exclusive solids each bounded 
by a closed surface. The domain exterior to the set of these solids is 
connected. We can find again a function G(p) harmonic in this domain 
for which limr^oo rG(p) exists and for which the boundary values are 1 
on all the boundary surfaces. We call G(p) the potential function of 
this set of solids (or of the set of surfaces). The capacity or outer 
radius of this set is defined as in §3 (1) by taking as a surface of in­
tegration any closed surface enclosing the whole set in question. The 
alternate definitions can also be generalized. 
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By a limiting process this definition can be further generalized and 
extended to an arbitrary closed set. The capacity or outer radius is 
an important monotonie set-function. Concerning its relation to cer­
tain problems of the Tchebychev type, cf. Pólya-Szegö [24]. 

Similar generalizations are possible for the inner radius. 

6. Generalized condenser. Let us consider the mutually exclusive 
closed surfaces s%9 $2, • • • , sny and let the closed surface SQ contain all 
these surfaces. The domain having the surfaces So, $it • • • > sn as its 
boundary is called again the field. 

We define a harmonic function Ui(p) in the field assuming the 
boundary values 

(1) *i(P) 

We introduce the integrals 

« 

on Si, 

on s&, k 7* i; i, k = 0, 1, 

1 C C dUi 
(2) c,*« - — I — AS, 

4ir J J afg an 

where the integration is extended over the surface s* and the normal 
is directed into the interior of the field. Obviously dk is positive if 
i = fe and is negative if i^k. We call the coefficients dk the capacity 
coefficients. 

By Green's identity we conclude 

+ dn = 0, i « 0, 1, • • • , n. (3) 

Also 

(4) 

CM + Cn + • 

Uo(p) + Ui(p) + ' + Un{p) « 1, 

since the function on the left-hand side of (4) has the boundary value 
1 on all surfaces S{. 

By Green's identity we find further 

— I I I grad Wigrad UkdV 

(5) 
1 C C °Ui 

4w 
\ \ uk — dS f \ f UkkUidV. 

J J dn Air J J J 

The volume integrals are extended over the field, the surface integrals 
over the complete boundary. Since w* = 0 on all the surfaces except 
on Su, and Aw,= 0, we find 
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(6) — I I I grad «rgrad ukdV = Cik. 

This new representation implies the symmetry relation 

(7) Cik = Cftt. 

Another remarkable corollary of (6) is the following identity involv­
ing the arbitrary real numbers a0, c*i, • • • , an: 

(8) £ Z Ci**«*h - — fff(jb"i grad «*) dV-

Thus the quadratic form on the left-hand side of (8) is non-negative* 
I t is easy to show that the form arising if i and k run from 1 to n is 
positive. 

If we write 

(9) u{p) = otoUo(p) + aiUi(p) + • • • + anun(p), 

the function «(£) will be harmonic in the field and w = a* on 5*; that is, 
a* is the constant value of the potential u on the conductor s*. The 
"charge" of u on 5k is 

(10) 
l /• r du 

pk — I I — j s — ttoCofc + aiCu + • • • + anCnjb. 
47T J J , t #W 

Obviously 

(11) ft> + |8i + • • • + ft> = 0. 

If the charges fik are prescribed such that they satisfy the relation 
(11), the system (10) of linear equations can be solved for the a*. 
Doing this, we can disregard the equation corresponding to & = 0 be­
cause it is a consequence of the others. They can be written as follows: 

( « 1 — <Xo)Cik + ( « 2 — <*o)C2& + * • • + (<*« — Oto)Cnk = Pk, 

k = 1, 2, • • • , n. 

The determinant of this system is different from zero and so 

(13) at - a0 = unfix + Z><A + • • • + Z>«A, i = 1, 2, • • • , *, 

where the constants Dik are uniquely determined. They are called the 
potential coefficients. Physical considerations show that they are all 
positive. The mathematical background of this fact is elucidated by 
a theorem of Stieltjes [30, p. 82]. 

The simplest non-trivial example of a generalized condenser is the 
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case w = 2 when si and s2 are two mutually exclusive spheres and s0 

is a sphere with infinitely large radius. (Cf. §16.) 

7. Cylindrical (two-dimensional) problems, (a) As a generalization 
of the Leyden jar we consider two infinite cylinders with parallel gen­
erators, one containing the other. We intersect these cylinders per­
pendicularly to the generators and denote by h the exterior and by h 
the interior contour of the cross section. Let u denote the harmonic 
function in the field between the two cylinders which assumes the 
constant value 0 on the exterior and the constant value 1 on the in­
terior cylinder. This function is constant along any line in the field 
parallel to the generators. I t is a two-dimensional harmonic function. 

The density of the charge on the cylinders is 

e du 
(1) , 

47T dn 

where e is the dielectric constant and n denotes the normal directed 
into the field. The total charge on the cylinders, per unit length, will 
be 

e r du 
(2) -rJy„dL-
where the integration is extended along l0 and Zx, respectively, and 
the normal is defined as before. 

(b) We assume e = 1 and from now on we consider the problem in 
the plane. Let l0 and h be two closed curves, h in the interior of h; 
we say that U and h form a "two-dimensional condenser." The closed 
set between the curves is called the field. The potential function u(p) 
of this condenser is a two-dimensional harmonic function in the field, 
satisfying the relations u(p)=0 on Z0 and u(p) = l on l\. The "two-
dimensional capacity" c of this condenser is defined by 

1 rdu 
(3) -sis*-
where the integration is extended over an arbitrary closed curve lying 
in the interior of U and containing h; the normal is the interior one. 
Since u is a harmonic function, this integral is independent of the line 
of integration. The capacity c is always positive. The charges (2) are 
±c/2. If c is the "two-dimensional capacity" of the two-dimensional 
condenser defined above, the capacity (per unit length) of the cylin­
drical condenser in space will be c/2. In case of the Leyden jar, dis-
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cussed in §1, we have (€=1) 

(4) u = (log b - log r)/(log b - log a), c * 1/log ( i /*) . 

As in space, an alternate definition is possible by means of Dirich-
let's integral. 

(c) Let / b e a closed curve in the plane. Green's function G(p) of 
the exterior of / (with respect to the point of infinity) is characterized 
by the following properties: 

1. G(p) is a harmonic function at every finite point in the exterior 
oil. 

2. If r denotes the distance of p from a fixed point, we have for 
large r 

1 1 öi cos <t> + b\ sin <f> 
G{p) * log log — + 

r f r 
(5) 

a2 cos 2<t> + ô2 sin 2$ 
• - r • • • > 

r2 

where f is a certain positive constant and ax, bi, a%, 62, • • • are real 
constants. 

3. G(p) = 0iî pisonl. 
The function G(p) is uniquely determined. 

We refer to the constant f as the outer radius or transfinite diameter 
of / (of the domain bounded by I).2 

Let us consider the two-dimensional condenser made up by h = l 
and by a circle U of radius p. Denoting its potential by up(p) and ca­
pacity by cp, we can show by an argument similar to that in §4 that 

(«,(#) - 1) log (p/f) - G(j>) = 0( l /p) , 

l i m ( « , ( 0 - 1) log p=G{p), 

provided £ is in the exterior of /. Moreover 

(7) cp log (p/f) - 1 = 0 ( l /p ) , lim cp log p = 1. 
p-tcq 

The definition of the outer radius can be extended to an arbitrary 
closed set. I t is a monotonie set-function. Concerning its relation to 
certain problems of the Tchebychev type, cf. Pólya-Szegö [24]. 

In order to avoid confusion, we point out that the term outer radius 
of a plane set can be taken in the utwo-dimensional" or "three-dimen-

2 In Pólya-Szegö [24] this constant was designated also as the capacity constant. 
In the present exposition we prefer not to use this term. 
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sionaP sense. For instance, the outer radius of a circular disk of radius 
1 is equal to 1 in the first sense and to 2/ir in the second sense. 

(d) Let / be again a closed curve in the plane, q an arbitrary fixed 
point in the interior of /. Green's function G(p\ q) of the interior of / 
with respect to q is characterized by the following properties: 

1. G{p ; q) is a harmonic function in the interior of / except for p = q. 
2. If r denotes the distance of p from q, we have 

(8) G(P;q) = log (X/r)-H(p;q), 

where H(p ; q) is a harmonic function of p throughout the interior of /. 
3. G = 0 Up is on/. 

The function G is uniquely determined by I and q. 
This concept is again closely related to the potential of a properly 

defined condenser. We denote the value of H at the point p = q by 22o 
and write iJ0 = log (\/rq). Then the positive constant rq is called the 
inner radius of / with respect to g. Since 12"= log (1/r) on /, we see that 
12*0 = log (1A«) must be a mean-value of the values log (1/r), hence rq 

must be a mean-value of the distances r of the points of / from q. 

8. Conformai mapping. The concepts of outer and inner radii in the 
plane are closely related to the conformai mapping. 

(a) Let Z be a closed curve in the plane. The exterior of I can be 
mapped conformally onto the exterior of a circle such that the point 
at infinity and the line element (that is, the magnitude and direction 
of the line-element) at infinity are preserved. The radius of this circle 
is uniquely determined by L It is identical with the outer radius f of I. 

If we introduce complex numbers z in the plane of / and complex 
numbers w in the plane of the circle, the mapping can be represented 
in the form w = ƒ(z) where ƒ(z) is regular in the finite z-plane outside 
of / and has a simple pole at 2= «>. It maps the exterior of / onto the 
domain |w| >f. For large \z\ we have 

(1) w = f(z) « z + Co + c^xz"1 + c-2z~2 + • • • , 

where the coefficients c0l c_i, • • • are uniquely determined complex 
numbers. 

Green's function G(p) can be represented in terms of the map func­
tion ƒ (z). If the point p corresponds to the complex number z, we have 

(2) G(p) - log (f/ | ƒ(«) | ). 

(b) Let / again be a closed curve, and q a fixed point in the interior 
of /. The interior of / can be mapped conformally onto the interior of 
a circle with center at q such that the point q and the line-element at q 
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are preserved. The radius of this circle is uniquely determined by I 
and q. It is identical with the inner radius rq of I with respect to q. 

If we introduce complex numbers z in the plane of / and complex 
numbers w in the plane of the circle, and if q is the point z = w = 0, this 
mapping can be represented in the form w = g(z)} where g(z) is regular 
in the interior of Z, g(0) = 0, g'(0) = l. I t maps the interior of / onto 
the circle \w\ <rq. For sufficiently small |z | we have 

(3) w = g(z) = z + c2z
2 + czz

z + • • • , 

where the coefficients c2, c8, * ' ' a r e uniquely determined complex 
numbers. 

Green's function G(p; q) can be represented in terms of this map 
function g (z). If p is the point z, we have 

(4) G(p;q) - log (rj \ g{z) | ). 

9. Symmetrization in space, (a) The capacity or outer radius 
C = C(S) of a solid 5 is an interesting function which can be compared 
with other important set-functions, like the volume V(S), the area 
A(S) or the diameter D(S). In case 5 is convex, the integral M(S) of 
the mean curvature can also be considered. I t is obvious that C(S) is 
"monotonie" and that in case of a sphere C(S) is equal to the radius 
of this sphere. 

In the theory of convex sets various inequalities are established be­
tween the quantities mentioned [2, p. 84]. These results are centered 
around the classical isoperimetric inequality: 

(1) A* - 36TTF2 ^ 0, 

with equality only for the sphere. This inequality holds also for non-
convex solids. Thus: Of all solids with given area, the sphere has the 
maximum volume. 

Another important inequality, holding for convex solids, is the fol­
lowing: 

(2) M2 - 4TA è 0, 

with equality only for the sphere. Thus: Of all convex solids with given 
area, the sphere has the minimum integral of the mean curvature. 

Another way of expressing these inequalities is the following. Let 
Rv~ [3F/(47r)]1/3 be the radius of the sphere with a volume equal to 
that of the given solid S. Let RA = [A/(4ir)]112 and RM = M/(4ir) have 
the analogous meaning taking the area and the integral of the mean 
curvature instead of the volume. Then 
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(3) RM à RA <S RV* 

In the first inequality S must be convex, in the second 5 may be 
arbitrary. 

(b) In the study of the isoperimetric inequality (1) and in related 
problems the idea of symmetrization is fundamental. 

Let us consider a plane e, a straight line e, and a point E. The sym­
metrization of the solid 5 with respect to the plane e is defined as a 
geometric transformation changing the solid 5 into a solid S' sym­
metric with respect to e and characterized by the following properties. 
Any straight line perpendicular to € and intersecting one of the solids 
S and S' intersects also the other and both intersections have the 
same length. The intersection with S may consist of several segments 
whose total length has to be taken ; the intersection with S ' is either 
a segment or a point. 

Symmetrization with respect to the line e changes 5 into a solid of 
revolution S" with axis e, defined by the following property. Any 
plane perpendicular to e and intersecting one of the solids 'S and S" 
intersects also the other and both intersections have the same area; 
the intersection with S'" is either a circular disk or a point. 

Symmetrization with respect to the point E changes the solid 5 
into a sphereS '" with center at E; S and S'" have the same volume. 

The first kind of symmetrization, repeated for a suitably chosen se­
quence of planes, generates the other two kinds of symmetrization. 

All three kinds of symmetrization preserve the volume and diminish 
(or leave unchanged) the area of the solid. This is a fundamental result; 
see, for instance, Bonnesen-Fenchel [2, pp. 69-72]. That part of the 
result which is concerned with the symmetrization with respect to a 
point is the classical isoperimetric property of the sphere expressed 
by the inequality (1). 

(c) Let us consider a condenser made up by the closed surfaces So 
and si. We symmetrize the condenser by symmetrizing the two solids 
bounded by s0 and $i simultaneously, with respect to the same plane 
or line or point. 

All three kinds of symmetrization diminish (or leave unchanged) the 
capacity of the condenser. That part of this statement which is con­
cerned with the symmetrization with respect to a point was discov­
ered by Poincaré [20, pp. 17-22]. A different proof was suggested by 
Faber [4] and the first complete proof was given by Szegö [32]. The 
two other parts are due to Pólya-Szegö [25]. Poincaré's theorem can 
be expressed in the form 

(4) C è # r . 
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From the previous general result, by proper limiting processes, we 
conclude [25]: 

All three kinds of symmetrization decrease {or leave unchanged) the 
outer radius {capacity) of a surface) they increase {or leave unchanged) 
the inner radius of a surface with respect to an interior point.1 

As a corollary we note: 

The inner radius of a surface with respect to an interior point is never 
greater than the outer radius. 

Another interesting corollary is the following [25 ] : 

The outer radius of a cylindrical solid is never less than the outer radius 
of a right circular cylinder of the same height whose base has the same area 
as that of the given solid. 

An analogous extremal property holds for the right circular cone. 
A limiting case of the above statement arises when the height of 

the cylinder becomes 0. Since the outer radius of a circular disk of 
radius a is 2a/ir (§12 (11)), we have: 

The outer radius of a disk {in the three-dimensional sense) is never 
less than 2/ir times the radius of a circle which has the same area as the 
given disk. 

10. Symmetrization in the plane. The analogous considerations in 
the plane are rather obvious. 

In the plane we have two kinds of symmetrization, one with re­
spect to a straight line e and another with respect to a point E. 

Let / be a closed curve in the plane and A the area enclosed by /, 
L the length of /, f the outer radius of / (in the two-dimensional 
sense), rq the inner radius of / with respect to a point q in the interior 
of /, C the outer radius (capacity) of the disk bounded by / (in the 
three-dimensional sense). Then we have: 

Both kinds of symmetrization increase {or leave unchanged) rg,
4 pre­

serve A and diminish {or leave unchanged) L, r, and C. 

Let us consider first the symmetrization with respect to a line. The 
part of the above statement concerning A is trivial, and that concern­
ing L is classical (Bonnesen-Fenchel [2, p. 72]). The other parts are 
due to Pólya-Szegö [25]. 

8 In this case the plane of symmetrization must go through the point q (similarly 
for the symmetrization with respect to a line or a point). 

4 See footnote 3. 
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As to the symmetrization with respect to a point, the statement 
about A is trivial and that concerning L is equivalent to the iso-
perimetric property of the circle. The statements about rq and f are 
equivalent to the area theorems of Bieberbach (see Pólya-Szegö [23, 
vol. 2, p. 21, problem 125, p. 22, problem 126]). Concerning exten­
sions of these statements to multiply connected domains, see Pólya 
[22] and Szegö [31 ]. The part concerning C is due to Pólya-Szegö 
[25]. (Cf. the last theorem in §9.) 

We note the following inequalities between the quantities men­
tioned: 

/A\1'* w fA\1'2 L 
(1) **(T) STC- (7) s , s s ' 
They all follow from the above statement except the last one which is 
of a different nature (see, for instance, Pólya-Szegö [23, vol. 2, p. 21, 
problem 124]). As a special corollary we mention: 

(2) rq ^ f. 

11. Parallel surfaces, (a) By the diameter D of a surface we mean 
the greatest distance between any two of its points. 

Considering all closed surfaces s with given diameter, the capacity C 
of s is a maximum if and only if s is a sphere. 

Concerning this extremum property of the sphere, cf. Maxwell [ l l , 
p. 117] and Szegö [33]. It can be expressed in the form of an in­
equality: 

(1) D £ 2C. 

The analogous inequality for the inner radius follows from here since 
this radius is never greater than C (cf. §9). 

I t suffices to prove (1) for convex surfaces. The proof given by 
Szegö is based on the use of parallel surfaces. If we denote by Sh the 
surface parallel to s in the distance h and by C(h) the capacity of Sh, 
the derivative C'{h) can be computed. From this not only (1) but 
the following more precise inequality follows: 

Of all closed convex surfaces s with given integral M of the mean curva­
ture, the capacity of s is a maximum if and only if s is a sphere. 

This is equivalent to the inequality 

(2) M è 4TTC, 

which is indeed more precise than (1) since lirD^M. 
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Recapitulating, we found the following inequalities for C, V, D, M: 

(3) D/2 à RM â C à Rv. 

(b) The following inequalities for the capacity of a condenser are 
due to Pólya-Szegö [25]. 

Let the inner surface S\ of a condenser of capacity C be convex and the 
outer surface 50 be parallel to 5X. Let h be the distance between SQ and su 

A the area of the surface Si and M the integral of the mean curvature of si. 
Then 

(4) A/(4wk) < C < A/(4irh) + Jf/(4r). 

For concentric spheres the second inequality becomes an equation. 

The lower bound is a customary approximation for C in case h is 
small; see for instance Maxwell [ l l , p. ISO]. The upper bound is sug­
gested by certain approximations due to Clausius [3, p. 43]. Concern­
ing the limiting case A—»oo, see (2). An improvement of the upper 
bound is the following inequality (Pólya-Szegö [25]) : 

1 2w / ( l - X)Jf + 4irh 1 + X\ 

C ^ X M ° g \ ( l + \)M + 4whl - X A 

X = (1 - 47IV1M-2)1'2. 

(c) Finally we point out the inequalities corresponding to (4) in the 
two-dimensional case. 

Let h be a closed convex curve in the plane and IQ an arbitrary outer 
curve parallel to lx. We denote by c the capacity of the two-dimensional 
condenser bounded by l0 and l\. If Lo is the length of lo and Li the length 
of lu we have 

(Lo/£i - l ) - 1 < c < {log (Lo/ i i )}- 1 

unless h is a circle. 

12. Example 1. Ellipsoid, (a) Let a, 6, c be three constants, 
a>b>c>0. We consider the quadrics 

x2 y2 z2 

( 1 ) a2 + p + b2 + p + c2 + p " h 

where p is a real parameter. For any point (ne, y, z) not in a coordinate 
plane, this equation has three distinct real roots in p which we denote 
byX,M, vx 
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(2) - a2 < v < - b2 < M < - c2 < X. 

They are called the ellipsoidal coordinates. (See, for instance, Kellogg 
[8, p. 186].) On the ellipsoid 

(3) x2/a2 + y2/b2 + z2/c2 « 1 

we have \ = 0. By means of these coordinates various condenser and 
conductor problems related to ellipsoids can be discussed in a very 
elegant way. We consider the problem of electrostatic equilibrium on 
the ellipsoid (3) (see, for instance, Kellogg [8, pp. 188-191]). If the 
charge on the ellipsoid is 1, the potential at an outside point p(x, y, z) 
will be 

1 r 0 0 dt 
(4) U(p) « — I ~, : f 
KJ V 2 J X {(a2 + t)(b2 + t)(c2 + t)}^2 

where X has the meaning above, X^O. For the capacity C we find 

1 _ 1 Ç00 dt 
(5)

 " C ^ T J O {(a2 + t)(b2 + t)(c2 + t)}v2' 

The density of the charge on the ellipsoid is 
(6) cr = d/iirabc, 

where d is the distance from the center of the tangent plane at the 
point (x, y y z). 

The problem of a condenser bounded by two confocal ellipsoids can 
also be treated. 

(b) We denote by a, j8, y the numerical eccentricities of the princi­
pal sections of the ellipsoid (3) : 

b2 — c2 a2 — c2 a2 — b2 

(7) a * = 02 = 72 = 

Then we have the following remarkable representations (Pólyz-Szegö 
[25]): 

(8) 
C ttS2«+l " \ 207 / 

c * 2-4- •• 2» / a 2 + /32\ 

abtfo 1-3 •• • (2w+ 1) ' \ 2a|8 / 

where P»(x) denotes Legendre's polynomial. 
In the special case of a prolate ellipsoid we have b = c, a = 0, (3—y, 

and 
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(9) c^- (2^-Uog^t?. 
1 — p 

In the special case of an oblate ellipsoid we have a = b, a~/3t 7 = 0, 
and 

(10) C*-1 = (a/3)-1 arc sin 0. 

Another interesting special case is that of an elliptical disk. Then 
c = 0 and we have 

( 1 1 ) c" J 0 ( ^ c o s ^ + ^ s i n 2 ^ 1 ' 2 ' 

tha t is, C is the arithmetic-geometric mean of the semi-axes a, b multi­
plied by 2 / T . In the case of a circular disk, a = 6, we find C=2a/w. 

(c) In the special case of the ellipsoid (3), the inequalities (3) of §11 
have been refined by Pólya-Szegö [25] (cf. also Pólya-Szegö [21 ], 
Watson [36], Szegö [34]) in the following way: 

j i , - W v . < ( f c ) 1 " + ( " f + W " < C 
(12) . + l+c S 

< < RM < a. 
3 

As to the radius RA, it turns out that C and RA are in general not 
"comparable." But we have (Pólya-Szegö [25]) 

(13) C^RA 

for an ellipsoid of revolution, according as it is prolate or oblate. I t is 
interesting to observe tha t for such an ellipsoid 

(14) C/RA = l±£-F+--- , 
945 

where the signs ± correspond to prolate and oblate ellipsoids, respec­
tively. The neglected terms contain higher powers of j3. (See Aichi [l ], 
Lord Rayleigh [26] and Russell [29].) 

From (11) we conclude that the capacity of an elliptical disk with 
semi-axes a, b does not change if we replace a, b by (a+b)/2 and 
(ab)1/2 (cf. Kellogg [8, p. 61]). In an analogous way, Pólya-Szegö 
[25] investigated certain transformations, related to the Landen 
transformation of elliptic integrals, which carry ellipsoids into ellip­
soids preserving the capacity. 
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13. Peripolar (toroidal) and dipolar coordinates, (a) Let a > 0 . In 
the complex <r-\-it plane we introduce the coordinates rj, 0 of a point 
p (<r, /) by the following equation : 

J + e-1+i9 
(1) <x + it = a ; 

or 

(2) <r = a(cosh rj — cos 0)""1 sinh 17, 2 = a(cosh rj — cos 0)~1 sin 0. 

The geometric meanings of rj and 0 are obvious. Let A and 5 be the 
two points —a and +a on the real <r-axis; then 

(3) v = log (Ap/Bp), 0 = angle (ApB). 

Of course 0 is determined only mod 2ir. For the points in the upper 
half-plane (*>0) we take O<0<7r, mod 27r, and for the points in the 
lower half-plane ( /<0) we take 7r<0<27r, mod 2r. For the point at 
infinity we have 0 = 0, mod 2x, on the line AB we have 0 = 7r, mod 27T, 
and on the part of the real cr-axis outside AB we have 0 = 0, mod 2ir. 

(b) Let us consider a rectangular coordinate system in space and a 
point p with coordinates x, y, z. We define the peripolar {toroidal) 
coordinates rj, 0, # of p in the following way (Riemann [27], C. Neu­
mann [ l5] , Mehler [12]). We put a plane through p and the z-axis 
which forms the azimuthal angle <£ with the #s-plane. (This plane is 
undetermined when p is on the s-axis.) In this plane we introduce the 
coordinates <r, t; rj, d as before, writing x = a cos </>, y = cr sin <j>, z = t; 
thus 

x = a(cosh rj — cos 0)_1 sinh t\ cos 0, 

(4) y = a(cosh rj — cos 0)~1 sinh rj sin <£, 

z = a(cosh t\ — cos 0)"1 sin 0. 

The range of these coordinates is rç^O, Og0<27r, 0rS<£<27r. 
(c) We define the dipolar coordinates (C. Neumann [18]) of the 

point p in a similar manner by putting a plane through p and the 
re-axis which forms the azimuthal angle <j> with the #;y-plane. In this 
plane we introduce a-, t; rj, 6 as before, writing x = af y = tcos</>t 

z — t sin 0 ; we find in this case 

x = a(cosh rj — cos 0)~1 sinh 77, 

(5) y = a(cosh 77 — cos 0)""1 sin 0 cos <t>, 

z = a(cosh 77 — cos 0)~1 sin 0 sin 0. 

The range of these co-ordinates is — oo<77<oo,O<0=
:7r, 0 :§# <2x. 
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We apply the same symbols rç, 0, <j> for both kinds of coordinates; 
no confusion is possible since in each definite problem only one kind 
of coordinates is used. 

14. Example 2. Anchor ring (torus). In peripolar coordinates an 
anchor ring is defined by the condition r\ = 770>0. In the exterior space 
we have 0<?;<7?o. The potential function of the ring is (Hicks [ó]): 

2 3 / 2 " e n _i / 2 (cOSh 77o) 
(1) u(p) = (cosh K) — cos 0 ) 1 / 2 2J cos^ÖjPw_i/2(cosh7;). 

T n»«0 Pn - l /2(C0Sh 7]o) 

The symbol X) ' indicates that the term w = 0 has to be multiplied by 
1/2. The functions6 

Pn_1/2(cosh rj) = e-w*»F(l/2, n + 1/2; 1; 1 - <r2*), 

ön~i/2(cosh 17) 

1-3 •• • (2n- 1) 
= 7T *-w»iF(l/2, n + 1/2; n + 1; er2'), 

2-4 • • • In 
where F is the hypergeometric function of Gauss and 77 > 0 , satisfy the 
differential equation 

(3) d*y/dn* + coth 4 rfy/Ay + (1/4 - n2)y = 0. 

This differential equation arises from Legendre's equation (satisfied 
by the Legendre functions Pw(cosh rj) and Qn{cosh 77)) by replacing n 
by w —1/2. The functions 

(Pn_i/2(cosh 77) 
(4) (cosh t\ — cos 0)1/2 cos #0 < 

l(?tt-i/2(cosh 77) 

are harmonic. They are called the ring {toroidal) functions. As to the 
convergence of (1) we note that Qw-1/2 (cosh 77) and Pn_i/2(cosh 77) are 
of the order e~~nn and eni,

t respectively, as n~* <x>. 
The capacity of the anchor ring is 

4 a " Qn-i /2(cosh 170) 

7T n«o Pn~l/2(COSh I/o) 

Taking the two first terms of this sum, we have the following ap­
proximation of the capacity [6, p. 643]: 

(6) 2aK/K' + 4a{K - E)/E', 

where K and E denote, as usual, the complete elliptic integrals of the 
first and second kind, and the modulus is 

6 The constant factor in Qn-m has to be replaced by 1 for # « 0 . 
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(7) k = e~% = R~\D - (D2 - i?2)1'2). 

Here D is the distance of the center of the revolving disk, which gen­
erates the ring, from the s-axis and R is the radius of the disk. 

Other problems connected with anchor rings have been treated by 
Ni ven [ l9] . 

15. Example 3. Spindle. In dipolar coordinates a spindle is defined 
by the condition 0 = 0O, O<0o<7r. In the exterior space we have 
O<0<0O . The potential function of the spindle is (C. Neumann [18, 
p. 224]) 

J
00 Lg(cos6o)Lq( — cos0) cos an 

- ^ — ^dq. 
-oo Lq( — cos 0o) cosh qir 

The function 

L3(cos 0) = 7T"1 cosh qir I (2 cosh r\' — 2 cos 0)""1/2 cos qrj'dri' 

(2) 
= F ( l / 2 + iq, 1/2 - {9; 1; cos2 (0/2)) 

satisfies the differential equation 

(3) d2y/d62 + cot 0 dy/dd - (q2 + 1/4) y « 0. 

This equation arises from Legendre's differential equation (satisfied 
by Pn(cos 0) and <2n(cos 0)) by substituting n= —1/2+iq. The 
functions 

(4) (cosh rj — cos 0)1/2Lg(— cos 0) cos qrj 

are harmonic. They are called the conal functions. 
As to the convergence of the integral (1) we note that 

(5) Lq(~- cos d)/Lq(— cos 0O) 

is a positive quantity less than 1 and that 

(6) I dq 
J _oo cosh qir 

is a convergent integral. 
For the capacity of the spindle we obtain 

- ƒ " 
• /„oc 

Z,ö(cos 0o) dq 

w XQ(~ cos 0O) cosh qir 
(7) 

- " F ( l / 2 + tg, 1/2 - ig; 1; cos2 (0o/2)) <Zg 

-•ƒ.. F( l /2 + ig, 1/2 - ig; 1; sin2 (0o/2)) cosh qir 
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For 0o = 7r/2 (sphere) we have C = a , since 

dq <8> I cosh qr 
= 1. 

Another form of the potential u, involving an infinite series instead 
of an integral, is due to H. M. Macdonald [lO]. 

16. Example 4. Two spheres. We consider two separated spheres 
(W. Thomson [35, pp. 86-97]; C. Neumann [14]; Maxwell [ l l , pp. 
266-273]). In this case it is convenient to use again dipolar co-ordi­
nates. But instead of the conal functions we employ now the har­
monics 

(1) (cOSh 77 ~ COS 0)1 '2Pn(cOS %±<n+l/2)^ 

where Pn denotes Legendre's polynomials. 
We can represent the two spheres in the form rj = a < 0 and t\ = j8 > 0. 

In the exterior space a<??</3. Using the harmonics mentioned, we 
have for the potential function 

u{p) = (2 cosh 7? - 2 cos 0)1/2 

. £ ( e * « + e-w )Pn(cos0), 

N = n + 1/2, Ô = p - a, 

and for the capacity 

(3) = 2aT\[eNa +e-N* J. 

An interesting limiting case arises when the spheres are tangent to 
each other (Maxwell [ l l , pp. 273-276]). Denoting their radii by r 
and r ' , we have in this case 

(4) r + r'\ T\r + r'/ V \r + r'J ) 

where T denotes Euler's gamma function and y Euler's constant. 
For r = r ' we have C=2r log 2 = 1.39 r. 

Let us consider the generalized condenser in the sense of §6 
bounded by the first sphere Si, the second sphere s2, and the sphere 
of infinitely large radius s0. Then the potential functions U\(p) and 
Ui(p) of §6 can be expressed in the form 
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ui(p) « (2 cosh v - 2 cos 0)1>2]£ e*« —P n (cos '0 ) , 

(5) ~° ' 6 

°° eN(n-a) _ eN(a-n) 
ut(p) - (2 cosh i7 - 2 cos fl)1^ *-w — Pn(cos 0). 

n-o *** ~ e~Nd 

The capacity coefficients Cu, Cvt — Cn, C22 can also be computed 
(Maxwell [ l l , p . 271 ]). 

17. Example 5. Lens, (a) In this case we return again to the peripo­
lar (toroidal) coordinates defining the boundary of the lens by the 
conditions 0 = 0i and 6 = 02. We can always assume that the "upper" 
surface of the lens is in the upper half-space, O<0i<7r. The "lower" 
surface may be in the upper or lower half-space, 0i<02<27r. In the 
space exterior to the lens we define 0 according to the condition 

(1) 02 - 2w < 0 < 0i, 

the value 0 = 0 corresponding to the point at infinity. 
We employ the harmonic functions 

(cosh 00, 
(2) (cosh rj ~ cos 0)1/2£3(- cosh rj) < 

Isinh qd, 
where Lfl( —cosh rj) is a function arising from the conal function 
Lfl( —cos 0) by a proper analytic continuation. We mention the fol­
lowing representation : 

LQ(— cosh rj) 

(3) r °° 
= 7T_1 cosh qir I (2 cosh rf + 2 cosh rj)~lf2 cos qrfdrf, q and r\ real. 

J -00 

I t can be shown that for q—» ± oo, rj fixed, 

(4) Lq(- coshrj) =0(e«l*l), 

where e is an arbitrary positive number independent of q. 
Now we have for the potential function (Mehler [12, p. 141]) 

u(p) = (2 cosh 17-2 COS0)1'2 

sinh q(B\—Q) cosh g(n—02)+cosh g(7r—0x) sinh g(2x—02+0) 
(5) • f 

2 sinh g(27T+0i~02) cosh qtr 

•Zg(~cosh rj)dq. 

For the capacity we find 
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î g("7r—#2)+cosh q(rr--di) sin 

s i n h g(27r+0i—0 2 ) cosh qir /

°° s i n h ç0i cosh q(ir—02)+cosh #(*•--0i) s i nh g(27r—02) 
——~-—-~- ~- dq 

(6) 
sinh q(r+di--02)+cosh q{2ir—0i—02) sinh #7r 

-•ƒ sinh #(2x+0i —02) cosh qw 

As to the convergence of (5) and (6) we observe that for g—>+ 00 
the order of magnitude of the factor of L ? on the range (1) is less than 

(7) 0-g(ir~|T-02l) -}- e~qOlf 

and this expression approaches 0 exponentially. Now we use (4). 
(b) The following special cases of the preceding general result are 

of particular interest. 
(a) Spherical bowl (calotte), 0i = 02, O < 0 I < T T (W.Thomson [35,p. 

186]; C. Neumann [17]); the capacity is 

(8) 
J

00 / coshq(w - 0i) y 

-oo \ cosh qir ) 

a ( 0i \ a a + a' 

T \ W ) Sin 01 7T 

where a is the radius of the "rim" and a' the "spherical radius" of 
the bowl. 

(/3) Circular disk, limiting case of (a), 0i = 02—>7r; C=2â0r . 6 

(7) Half spherical shell (thin), special case of (a), 0i = 02 = 7r/2; 
C « a ( l / i r + l /2 ) . 

(«) Half spherical solid, 0I = TT/2, 02 = 7T; C=2a(l-3~~1 /2) . 
(e) Symmetrical lens, 0i+02 = 27r; in this case 

/

°° cosh q{j — 0i) 
*± L 

-oo cosh g0i cosh qw 
dq. 

xf __oo cosn qv\ cosn qir 

(f) Sphere, 02 — 0i = 7r; 

cosh q(w — 20i) a J w cosh q(w - 20i) 

-00 cosh qir sin 0i 

(77) Two spheres tangent to each other, a suitable limiting case, 
0i->O, 02->27r, a->0; cf. §16. 

(0) The two spheres forming the lens are orthogonal in such a way 
6 According to a remark of W. Thomson [35, p. 180] Cavendish found by experi­

ment a/C*= 1.571. 
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that the exterior (dielectric) angle is 7r/2, 0 2 ~ 0i = Sw/2 (Maxwell [ l l , 
p. 261]); 

(11) C ~r + r' - a, 

where r and rf are the radii of the spheres. 
The capacity integral (6) can be computed in closed form in all 

cases when the dielectric angle 27r+0i — 02 is a rational multiple of ir. 
As to the potential function u(p), it can be computed in terms of ele­
mentary functions only for certain special multiples; in other cases it 
leads to elliptic and more complicated functions. (See Macdonald 

H) 
In certain cases the problem of the lens can be also treated by using 

the famous method of electric images due to W. Thomson [35, pp. 
144-191]; see also Maxwell [ l l ] . 
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