
ARITHMETIC UPON AN ALGEBRAIC SURFACE1 

B. SEGRE 

The title of my lecture is, I am afraid, probably misleading and 
certainly too ambitious. For, on the one hand, the connection be­
tween arithmetic and geometry suggested by it is not the modern de­
velopment in divisors theory, but an application of algebraic geome­
try for arithmetical purposes. On the other hand, I shall confine the 
subject of this lecture to cubic surfaces in ordinary space, considered 
in the rational domain, so that a proper title would be for instance 
The geometry of ternary cubic Diophantine equations.2 I prefer, how­
ever, the more ambitious and inaccurate one, as suggesting the possi­
bility of similar investigations for other surfaces, possibly considered 
in more general arithmetical fields. 

The short time at my disposal does not allow me to dwell on such 
extensions. I mention only that I have already completed an exten­
sive arithmetical research on quartic surfaces; and that the whole 
subject—arithmetic upon an algebraic surface—seems to me to be 
so wide in scope, that I can envisage the possibility of further im­
portant developments. 

Let us consider an ordinary space, where coordinates (x, y, z) are 
introduced and points at infinity are defined in the usual way. I call 
rational an algebraic surface, or curve, or point set of this space when 
it can be represented by one or more algebraic equations with ra­
tional coefficients, 

(1) F(x, y, s) « 0 

say. Moreover, I call rational any such equation, and also any poly­
nomial such as F(x, yy z). 

The problem of finding the rational solutions in x, y, z of equation 
(1) can then be stated as that of determining the rational points lying 
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on the rational surface F, represented by (1). Moreover, a parametric 
solution 

(2) x = 0i(\)/04(\), y = 02(X)/04(\), z = 03(X)/04(X) 

of (1), where the O's are relatively prime rational polynomials in X, 
gives a rational unicursal curve lying on F. Likewise, a two-parameter 
solution 

(3) x = 0i(X, M)/04(X, M), 3> = 02(X, M)/04(X, /X), 2 = 03(X, /x)/04(X, M) 

of (1), where the d's are now relatively prime rational polynomials in X 
and fi, gives a rational representation of F upon a plane a, on which 
(X, jLt) are coordinates of a variable point. The degree of a parametric 
solution (2) or (3) is defined as the greatest of the degrees of the poly­
nomials 0 in (2) or (3) respectively. 

When the equations (3) induce a (1, 1)-correspondence between F 
and a, all the rational solutions of (1) are given by (3) either for ra­
tional values of the parameters X, ju, or as limits, when the parameters 
tend to certain sets of rational values. Hence I shall then say that 
(3) is a complete two-parameter solution of (1). 

From now on, I suppose F to be a rational cubic surface, repre­
sented by the equation (1). This can be written in the form 

(4) 0o + <t>i(x, y, z) + 02(#, y, z) + <t>3(x, y, z) = 0, 

where <£o is a rational number and #i, <f>2f 4>s a r e homogeneous rational 
polynomials in x, y, z, of degrees 1, 2, 3 respectively, the two first of 
which may possibly vanish identically. F is said to be singular\ if 
there are some points P(x, y, z) (not necessarily rational, and possi­
bly at infinity) which satisfy the equations (1) and 

(5) dF/dx « dF/dy = dF/dz - 0. 

Such a point P is called a double point of F if some of the partial 
derivatives of the second order of F do not vanish at P ; otherwise P 
is called a triple point of F. A point P(x, y, z) lying on F, that is, which 
satisfies (1), is called a simple point of F if it does not satisfy (5). 

I now investigate the Diophantine equation (1) or (4), on supposing 
that F is irreducible and that a particular rational solution (#0, ^o, z0) 
is known. I shall show that, apart from a single trivial exception, 
it is then possible to deduce an infinity of rational solutions. By choice of 
the rational coordinates (x, y, z), the rational point P(XQ, y0f Zo) can 
be taken at the origin, so that , from (4), $o = 0. I distinguish three 
cases, according as P is a triple point, or a double point, or a simple 
point of F. 
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If P is a triple point of F, the equation (4) is 

fa(x, y, z) = 0, 

and can therefore be written in the form 

Ux, F, i) - o, 
on putting X = x/z, Y=y/z. The problem of finding the rational points 
of F is now that of determining the rational points of a plane cubic 
curve, and lies outside the scope of the present lecture. Hence I 
suppose that F has no rational triple points, and then it is easily 
seen that F has no irrational triple point, so that its only singular 
points (if any) are double points. 

If the origin P is a double point of F, the equation (4) becomes 

(6) fa{x, y, z) + <t>z(%, y, z) = 0, 

where fa and fa are two relatively prime polynomials, neither of which 
vanishes identically. There is now a (1,^-correspondence between 
the rational points Q of F and the rational lines PQ containing P . 
This gives the following complete two-parameter solution of (6), of 
degree three : 

x = — X02(X, fx, l)/fa(\, jw, 1), y = — vfa(\ fi, l)/0s(X, M, 1), 

2 = ~ fa(\ /*, l)/0s(X, M, 1). 

If P is a simple point of P, then in (4) we have <£0 = 0 but <t>i(x, y, z) 
does not vanish identically, and the equation cj>i(x, y, z) = 0 represents 
the plane TT touching F a t P . On taking this plane as #;y-plane, the 
equation of F becomes of the form 

(7) z + fa(xf y, z) + 4>z(x, y, z) = 0, 

and I further distinguish two cases, according as faix, y, 0) vanishes 
identically or not. 

When fa{xy y, 0 ) ^ 0 , there is a (1,1)-correspondence between the 
rational points Q of F lying on ir and the rational lines PQ of T con­
taining P . Such oo i points Q are said to be obtained by means of the 
tangent plane process applied to F and P , and are all given by the 
following one-parameter solution of (7) : 

x = - X02(X, 1, 0)/*8(X, 1, 0), y - - tf>2(X, 1, O)/03(X, 1, 0), 2 = 0. 

When faix, y, 0) = 0 the tangent plane process cannot be applied, 
and the equation (7) has the form 

z[l + ypi(x, y,z)] + fa(x, y, z) = 0, 

where \J/i is a rational linear form in x, y, z. Hence, on putting 
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X = x/z, Y = y/z, Z = [1 + 2-Vi(*. y, z)]/z, 

this equation reduces to the form 

(8) Z2 = f{X9 F), 

where ƒ is a rational cubic polynomial in X, F, which cannot be writ­
ten as a polynomial in a single linear function of X and F. 

I have recently solved parametrically the general equation (8), by 
first reducing it to a convenient canonical form, and then using a 
method which has been already employed by Professor Mordell in 
a particular case. Here I solve the equation in another particular 
case, which is perhaps the simplest one in which the method can be 
applied. I add tha t I have previously solved parametrically some 
cubic. Diophantine equations included in (8), by considerations of 
algebraic geometry. Professor Mordell then devised his purely alge­
braic method, giving an independent proof and also an extension of 
these results of mine. I give now also a new algebraic-geometric pro­
cess for solving parametrically the equation of any rational cubic sur­
face of which a rational simple point is known. This process can be 
applied to (8) in particular, and has the advantage of making intui­
tive the solvability of this equation. 

I solve first the following particular case of (8) : 

(9) z2 — ry2 = xz + px + q, 

where py q, r are rational and r 5*0. For this purpose, I remark that, on 
denoting by 0, <j>, x// the three roots of the cubic equation xz+px+q = 0 
and putting 

z + fi/2y = I I fe + M* + rll2{yt + fxd)l 

(10) *'*'* 
z - rU*y = I I k + X02 - r1/20? + id)], 

the equation (9) is satisfied if 

(11) x - '6 = (É + X02)2 - r(ri + fxd)2 

holds, together with two other similar relations in <j> and \//. Writing, in 
(11), —pd2--qd for 04 and comparing coefficients of 0°, 01, 02, we obtain 

(12) x = e - n \ 

1 = #X2 + 2r\xr\, 

0 = 2X£ - p\2 - fM2. 

The last two equations give 
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$ = (p\* + r^)/2\ u - (1 - qV)/2r». 

Hence, on substituting these expressions for £, rj in (12), and in the 
two relations obtained by subtracting and adding the equations (10) 
together, we deduce x, y, z as rational functions of X, /x, with rational 
coefficients, satisfying (9). 

I consider next a rational cubic surface F, of which a rational simple 
point P is known, and give the following geometric construction leading 
always to an infinity of rational points of F. 

A rational line r passing through P meets F again in a rational 
pair of points, H, K say. This means that U, K are either rational or 
quadratic conjugate; and we can suppose, by choice of r, that H, Kf 

and P are distinct. I fix then another rational line 5 in a general posi­
tion, and consider the twisted cubic curve, T say, uniquely defined 
by the conditions of osculating at H, K the sections of F with the 
planes Hs, Ks respectively. I t is easily seen that T is rational and irre­
ducible and does not lie on F. Hence T and F meet at 3 • 3 = 9 points, 
of which three are absorbed by H and three are absorbed by K, so 
that the remaining intersections constitute a rational triplet, M, N, 0 
say. These three points are noncollinear and lie in a plane which does 
not contain P. 

Denoting by w the (obviously rational) tangent plane of F a t P , 
I finally consider the quadrics touching x at P and containing 
M, N, 0. These quadrics constitute a homaloidal system. I t can be 
proved by means of the Cremonian transformation defined by them 
that it is possible to choose (in an infinity of ways) two such quad­
rics, so that their intersection is an irreducible rational quartic curve, 
A say, touching F a t M> N, and 0. A does not lie on F, and so meets F 
at 3-4=12 points, of which four are absorbed by P a n d two are ab­
sorbed by each of the points M, N, 0 . The remaining intersections are 

12 - 4 - 2-3 = 2 

in number, and form a rational pair, 5, T say. Clearly the line ST is 
rational and does not lie on F; moreover ST does not contain P , 
since A has no trisecants. Hence ST meets F again at a point which 
is distinct from P and uniquely defined, and therefore rational. This 
rational point assumes an infinity of positions on F, on varying the 
lines r, 5 and the quartic A considered above. 

I t is easily seen that the irreducible rational cubic surfaces F which 
are singular, but not of the types already investigated, are of the fol­
lowing three kinds. 

(i) F has four nonrational and noncoplanar double points. 
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(ii) F has three nonrational and noncollinear double points. 
(iii) F has two nonrational double points. 

I state now the following results concerning the corresponding Dio­
phantine equations. 

In case (i), it is possible to obtain a complete rational two-parameter 
solution of the 3rd degree. 

In case (ii), there may be no rational solutions. When any particular 
rational solution is known, it is possible to deduce a complete rational 
two-parameter solution of the 6th degree. No complete two-parameter 
solution of degree less than six exists, except when F satisfies certain 
arithmetical conditions, in which case F has a complete rational two-
parameter solution of the 3rd degree. 

In case (iii), F can always be solved parametrically, but in general 
there are no complete two-parameter solutions. 

In case (i), there is an infinity of rational twisted cubic curves 
containing the four double points of F, say A, B, C, D. In general 
one of these cubics is irreducible and does not lie on F, and so it has 
3-3 = 9 intersections with F, of which 2-4 = 8 are absorbed by A, B, 
C, D. Hence the remaining intersection is rational. I t is possible to 
construct in this way all the rational points of F. A complete two-
parameter solution of the 3rd degree can be obtained, on transforming 
F into a rational plane by means of the homaloidal system formed by 
the oo3 cubic surfaces having four double points 2XA,B, C, D. Simi­
lar geometric arguments can be applied in case (ii). 

These indications may suffice, and I add only the following appli­
cations concerning two particular cubic Diophantine equations of 
types (i) and (ii) respectively. 

First put 
$ = (ky2 - 2kxz + t2)2 - h(x2 + kz2 - 2yt)2, 

* = (kfi2 - 2k\v + co2)2 - k(\2 + kv2 - 2MW)2, 

where k denotes any nonzero rational number, and consider the cubic 
homogeneous Diophantine equation in x, y, z, t: 

(13) ad$/dx + bd$/dy + cd$/dz + dd$/dt = 0, 

where a, b, c, d are any four rational numbers not all zero. A complete 
two-parameter solution of (13) is then 

d^ d* d* d* 
(14) x\y\z\t = — : — : — : k — , 

dv dfi d \ dct) 

where the parameters are subject to the linear equation 
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(15) k(cK + bp + av) + da> « 0. 

More precisely, all the rational solutions of (13) are given by (14) 
for rational values of \:ixlvlo) subject to (15), if k is not the square 
of a rational number. If k~p2, with p rational, the equation (13) has 
the additional solutions 

x + pz = t + py~0 and x — pz = t — py = 0. 

Secondly consider the rational cubic equation 

(16) a$* + bd2 + c$ + d~0 (o * 0), 

and suppose that it has three nonrational (and therefore distinct) 
roots 0, <j>, \f/. Hence (16) has a nonzero discriminant 

D = - 27a2d2 - 4ac* + ISabcd - Mb* + b2c2. 

It is easily seen that the rational cubic equation 

(17) IL(*+yO+ M2) = 1 

is of type (ii). This equation has been solved parametrically by La­
grange and Euler by taking 

(18) x + yd + z62 = (X + iti + vd2Y/ I I (X + /*» + ^ 2 ) 

and so on, where X, /z, v are parameters of which only the ratios are 
significant. The rational two-parameter solution of (17) given by (18) 
is of the 3rd degree, and, in agreement with a previously quoted re­
sult, is noncomplete. With the method indicated, however, it is possi­
ble, from the particular solution 

X = 1, y =a 0, Z = 0 

of (17), to deduce a complete rational two-parameter solution of the 6th 
degree. Moreover, it can be proved that the equation (17) has a com­
plete rational two-parameter solution of degree less than six if and only 
if the discriminant D of (16) is the square of a rational number. When 
this condition is satisfied, (17) has in fact the complete rational two-
parameter solution of the 3rd degree defined by the equation 

x + y$ + z$2 = (X + ju0 + ^2)(X + W + vf2)2/ Ü (X + tf + vB2) 

and by those obtained from it on permuting 0, #, ^ cyclically. 
I consider now the cubic surfaces which are nonsingular.3 It is well 
8 For a new approach to these surfaces, cf. B. Segre, The nonsingular cubic sur-

faces, Oxford, 1942. 



19451 ARITHMETIC UPON AN ALGEBRAIC SURFACE 159 

known that any such surface F contains 27 lines, each of which may 
of course be rational or not. I first remark that F may contain no ra­
tional points, as it is shown by the examples 

xz + 2yz + 4zz = 9 and xz + 2yz + 1zz = 14, 

which can be easily generalized. 
The determination of necessary and sufficient conditions for the 

existence of rational points on F is an important and difficult ques­
tion. I have not succeeded in solving this problem, but the considera-
of certain arithmetical properties for the lines of F leads to some 
sufficient conditions. 

I t must be noticed that F cannot contain one rational point without 
consequently having an infinity of rational points. For, since F is non-
singular, a rational parametric solution can always be deduced from 
a single rational solution, as said before (p. 156). The number of pa­
rameters involved is not essential, and can be made arbitrarily large 
by a repeated application of the tangent plane process. In particular, 
it follows easily that : 

A nonsingular cubic surface F can be rationally represented upon a 
plane a if and only if F contains a rational point. 

Such a representation does not give in general a (1, ^-correspond­
ence between F and a. In fact, for the existence of a representation 
having this property, further conditions are required from F. I have 
studied these conditions, as well as those for the existence on F of 
nontrivial rational curves, that is, of rational curves which are not the 
complete intersection of F with another rational surface. The results 
are unexpectedly simple, but I have no time now to dwell on them. I 
confine myself to pointing out the remarkable fact that these arith­
metical conditions affect the 27 lines of F only. 

The 27 lines of the cubic surface 

can be obtained easily, and the general theory leads now to particu­
larly simple results. On altering, in (19), x, y, z by arbitrary nonzero 
rational factors, and permuting arbitrarily x> y, z, we obtain an in­
finity of equations of the same type as (19), any two of which will 
be called equivalent. 

I first consider the equations 

(20) 

(21) 

(22) 

axz + byz + czz = 1 

axz + acyz + czz = 1 

a(xz + yz) + zz = 1 

xz + yz + zz = 1, 

(abc y* 0) 

(ac ?* 0), 

(a * 0), 
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which obviously are successive particularizations of (19). I can then 
state the result: 

A cubic surface (19) contains some nontrivial rational curves, if and 
only if (19) is equivalent to an equation of the form (20). This condition 
is also necessary, but not sufficient, for (19) to have a complete rational 
two-parameter solution. An equation (19) has a rational two-parameter 
solution of degree three or four, possibly noncomplete, if and only if (19) 
is equivalent to an equation of the form (22) or (21) respectively. 

Such parametric solutions of (22) and (21) have already been ob­
tained by Euler and Hermite respectively, and these are both com­
plete. I add that there are equations (20) having no rational solutions, 
as for example, the one obtained from (20) for a = 1/2, c = 1/7. When 
a single rational solution of (20) is known, it is possible to determine a 
complete rational two-parameter solution of (20), of degree six. 

I consider next the following particularizations of (19) : 

(23) xz + yz + kz* + k = 0, 

(24) xz + yz + kz% + 2 = 0, 

(25) x* + y* + 2zz + 2 = 0, 

where k is a nonzero rational number which is not twice the cube of a 
rational number, and state the following theorem. 

The equation (19) has solutions with x, y, z rational polynomials in 
a parameter X, of degree four or less, if and only if (19) is equivalent to 
one of the equations (23), (24), (25). By a proper choice of X, the solu­
tions are as follows. The equation (23) has only the solutions 

x = X, y = — X, s = — 1 

and 

x = - (9/£)X4 + 3X, y « (9/£)X4, z = (9/£)X3 - 1. 

The equation (24) has only the solution 

x = (6/&)X3 - 1, y = - (6/&)X3 - 1, z = (6/£)X2. 

The equation (25), in addition to the three solutions given f or k = 2 by 
the previous expressions, has only the further solutions 

iC==4X2-6X+l s=(2/27)(4X4~4X8-6X2+17X--2), 

y = 4 X 2 - 2 X - l and y==(4/27)(2X4-~8X8+6X2+4X~13), 

2 = - 4 \ 2 + 4 X - . i 2=(l /27)(-8X4+20X3~24X2-16X+37). 

The particular result following from this theorem on supposing 
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a = b = c in (19) has previously been obtained by Professor Mordell, 
in an entirely different way. 

In conclusion, I regret I have had to dwell more on my results 
than on my methods. The latter are purely algebraic-geometric in 
character and, as I said at the beginning, can be extended and em­
ployed in other directions. 

It may be noticed that my work does for cubic surfaces what 
Poincaré did for plane cubic curves more than 40 years ago. In my 
work, however, the use of geometry is more essential and far-reach­
ing, since there are several properties of cubic surfaces which are 
arithmetically significant, and have no counterpart for plane cubic 
curves. For instance, the general cubic surface F is homaloidal, that 
is, F can be related in the complex domain to a plane by a 1(1,1) 
algebraic correspondence. A similar result does not hold for the gen­
eral plane cubic curve, since this is not unicursal, but elliptic. Another 
important property having no analogue for plane cubic curves is that 
F contains 27 lines, and that every algebraic curve lying on F can 
be constructed as partial intersection of F with another algebraic sur­
face, the residual intersection being a set of lines of F taken with 
proper multiplicities. 

It ought to be mentioned that a few interesting, but isolated and 
comparatively elementary, examples of application of geometric ideas 
in the study of cubic ternary Diophantine equations have been given 
by Libri, Euler, Hermite and, in recent times, by H. W. Richmond. 

I am glad to have the opportunity of acknowledging that I owe the 
first stimulus for my research to Professor Mordell, who, a little more 
than a year ago, pointed out to me the geometric results of the au­
thors just named, as well as his own arithmetical results on sums of 
three cubes. 
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