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HadamarcTs theorem is concerned with the relation between the 
maximum absolute values of an analytic function on three concen­
tric circles.1 If we put 

M(r) - m a x | / (*) | , 

then the theorem states that log M(r) is a convex function of log r for 
r'<r<r", if f(z) is regular for r ' < | s | < r" . This is an immediate 
consequence of the fact that if \f(z) \ £A \ z\x on two circles about the 
origin, then it is also true between the circles; and this in turn is 
seen by applying the principle of maximum to f(z)/zK. The bound is 
attainable within the ring only for f(z)—azx with \a\ —A. Notice 
that this function is single-valued only if X is an integer, so that 
Hadamard's bound is not in general sharp for single-valued functions. 
(It is the sharp bound for the class of many-valued functions, any 
branch of which is regular in the ring, and for which \f(z) \ is single-
valued.) 

We shall consider only single-valued functions. The problem of 
finding the sharp bound in Hadamard's theorem is formulated as 
Problem A below. (It is no essential restriction to suppose that the 
radius of the outer circle is 1, and that the given bound on this circle 
is 1.) Problems B and C raise the same question for more special 
classes of functions. 

PROBLEM A. Suppose 0<q<Q<l and p>0. Consider the class of 
functions satisfying the following conditions: f(z) is regular for 

l / O O l ^ l for | * | - 1 , | / («) |SS# for | s | - ; . 

An address delivered before the Berkeley meeting of the Society on April 29, 
1944, by invitation of the Program Committee; received by the editors May 6, 1944. 

1 The theorem was stated (without proof) in Hadamard's note, Sur les fonctions 
entières, Bull. Soc. Math. France vol. 2.4 (1896) pp. 186-187. His proof was apparently 
first published in 1912; it may be found in footnote 2, p. 94, of Selecta: Jubilé Scien' 
tifique de M. Jacques Hadamard, Paris, 1935. In the meantime, proofs (of a less simple 
nature) had been given by O. Blumenthal and by G. Faber. See Blumenthal, Über 
ganze transzendente Funktionen, Jber. Deutschen Math. Verein. vol. 16 (1907) pp. 97-
109, and Sur le mode de croissance des fonctions entières, Bull. Soc. Math. France vol. 
35 (1907) pp. 213-232; Faber, Über das Anwachsen analytischer Funktionen, Math. 
Ann. vol 63 (1907) pp. 549-551. 
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Let P be the largest value of \f(Q) \ for any function of the given class. 
How much is P, and for what f unctions is it attained? 

PROBLEM B. The same as Problem A, with the additional hypothesis 
that the coefficients of the Laurent series for f(z) are positive or zero. 

PROBLEM C. The same as Problem A, with the additional hypotheses 
that p<\ and that f (z) is regular also f or \z\ <q (hence for \z\ g l ) . 

REMARKS. From any function/(s) with \f(Q)\ ~ P we can obtain 
a function H(z) with H(Q)=*P, by putting H(z)~Pf{z)/f(Q). The 
name extremal f unction will be applied only to an admissible function 
withiJ(Q)=P. 

We may determine a real X such that qx~p. If X is an integer, then 
H(z) =sx is the extremal function for all three problems; but if X is 
not an integer, then sx is not an admissible function. We may restrict 
ourselves to the latter case, and shall use n to denote the integer 
such that n — 1 <X <n . 

If we indicate the dependence of the extremal function on p by 
using the notation H(zf p), then it is clear that for the first two prob­
lems we have 

B(zt pqh) « zkH(z, p) 

for any integer k, since a power of z times an admissible function is 
admissible; but for Problem C no such relation is to be expected. 
Consequently, there is no loss of generality in supposing q<p<\ 
(that is, » = 1) when studying Problems A and B. 

Summary of results.2 We state here some of the principal results 
that are known concerning the three problems. For each of the prob­
lems, the extremal function H (z) exists and is unique, and is real for 
real z. It is univalent if q<p<l. In Problems A and B, H(z) is inde­
pendent of Q; and the same is true in Problem C at least if q<p<l. 
We tabulate some additional results in the three cases for comparison. 

PROBLEM A. 
zHf(z)/H(z) is an elliptic function of log z. 

2 Problem A was first solved by O. Teichmüller, Eine Verschürfung des Drei-
kreisesatzes, Deutsche Mathematik vol. 4 (1939) pp. 16-22. But we shall follow here 
the solution given by the author in Analytic functions in circular rings, Duke Math. J. 
vol. 10 (1943) pp. 341-354. Problem B was solved by F. Carlson, Sur le module 
maximum d'une fonction analytique uniforme, Arkiv för Mathematik, Astronomi, och 
Fysik vol. 26A (1938). Problem C is studied by M. H. Heins in a paper, On a problem 
of Walsh concerning the Hadamard three circles theorem, Trans. Amer. Math. Soc. 
vol. 55 (1944) pp. 349-372, which I had the privilege of reading before publication. 
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H(z)\ =1 for |JS| = 1 . 
H(z)\ =pfor \z\ = g. 
f q<p< 1, w—H(z) maps #< | s | < 1 on | w| < 1 omitting an arc of 

w\ —p. 

PROBLEM B. 

H(z) is an average of zn~~l and zn. 
H(z)\ <1 for \z\ = 1 except at s = L 
H(z) f <p for | s| =g except at z — q. 
f q<p<l, w=H(z) is a contraction with 1 as fixed point. 

PROBLEM C. 

H(z) is a rational function of the nth. degree. 
'H{z)\ = l fo r \z\ = 1 . 
H(z) I <p for 12J =g except at n points. 
f q<p<\, w~H(z) maps the unit circle onto itself. 

Study of Problem A. We suppose q<p<l. It may be seen from 
general mapping theorems that there exists a function H(z) which 
maps the ring q< \z\ <1 on \w\ <1 omitting an arc of \w\ ~p. We 
may suppose that p is the midpoint of the omitted arc. The function 
H(z) is regular on the boundaries of the ring, and we have 

|ff(s)| = l for | * | - 1 , \B(z)\-p for | s | - f . 

If f(z) is any admissible function, then | f(z)/H(z) | ^ 1 on both bound­
aries of the ring. We could apply the principle of maximum to con­
clude that |/(Q)/2T(Q)| ^ 1 , were it not for the fact that H(z) has a 
zero in the ring, so that f(z)/H(z) has a pole. The fundamental lemma 
of the author's paper provides an extension of this principle which 
enables the conclusion to be drawn nevertheless. The lemma states 
that if a function is regular in a circular ring except for one simple 
pole, and dóes not exceed 1 in absolute value on the boundaries, then it is 
less than 1 on the radius opposite the pole. Applying this lemma, we 
verify that H(z) is the desired extremal function. 

By applying Schwarz's reflection principle, we can continue H(z) 
to the whole plane excluding 0 and 00. The reflections on the outer 
and inner boundaries give the relations 

HiX/z) - 1/H(z), H(q*/z) - p*/H(z), 

if we use the fact that H(z) is real for real 2. From these it follows that 

H(qh) - p*B{z), 

and hence 
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q2zHf(q2z)/H(q2z) - zH'(z)/H(z). 

Thus zH'{z)/H{z) is an elliptic function of log z with the periods 
2 log q and 2iri. 

It is not difficult to obtain the explicit formula 

H(z) = zd(qz/p)/6(pz/q) 

where 

This enables easy calculation of the extremal function. 

Study of Problem B. Here 

/to - È «* 
with Cjfĉ O, hence M(r)=f(r). Evidently 

M"(r) ^ 0, 

the equality holding only if M(r) = Co+Cir. If q<p<l, we can deter­
mine positive Co and cx so that Af(l) = 1, M(q) =p; that is, so that 

Co + Ci = 1, Co + txq = ƒ>. 

With this determination of Co and Ci, the extremal function is 

H(z) — Co + ciz. 

This result of Carlson, which concerns a special class of functions, 
has an interesting application to the more general class previously 
considered. In fact, if we no longer suppose that f(z) has positive 
coefficients, we have nevertheless that the average of | ƒ(z) f2 on \z\ ~r 
is 

E |*»|v«*, 

which is a power series in r2 with positive coefficients, so that Carl­
son's result may be applied. If we suppose given that the average of 
\f(z)\2 on \z\ =1 does not exceed 1, and that the average on | s | ~q 
does not exceed p2 (q<p<l), then the function H(z) having the 
largest quadratic mean on \z\ =Q is of the form 

H(z) - Co + ciz, 
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where c0 and cx are subject to the conditions 

|c0|
2 + k|2 = l, M2 + k | y = #2. 

Some lemmas. We consider now some results that are used in the 
study of Problem C. The results concern functions constant in abso­
lute value on a circle, and interpolation by bounded functions. 

In the first place, an equality such as | F{z) | = 1 either holds identi­
cally on \z\ = 1 or at but a finite number of points, provided F(z) is 
regular on |z| =1 . For on the circle, | F(z)\ =1 is equivalent to 

F(z)F(l/z) = 1. 

Since the left side is regular on the circle, the result follows. 
Suppose now that F{z) is regular for \z\ ^ 1 and that | F(z) | = 1 for 

\z\ = 1. Let au a2, • • • , aw be the zeros of F(z) in \z\ < 1. Then we find 
that 

JL. z — ük i i 

F ( « ) . « n - — ^ ( | « I - D 
fc«i 1 — dkZ 

by applying the principle of maximum and minimum to F(z) divided 
by the product on the right. The zeros and poles of F(z) are inverse 
with respect to the given circle | z\ = 1. A similar result holds for any 
other circle. If | F(z)\ were constant on two circles about the origin, 
F(z) being regular within the larger circle, then the zeros and poles 
would have to be inverse with respect to both circles, that is, the 
zeros at 0 and the poles at oo, and hence F(z) =o#n. 

Concerning interpolation by bounded functions, we need the fol­
lowing theorem. Let zu z2l • • • ,zniÇben+\ distinct points in \z\ <1 , 
and let w\, W2, • • • , wni o> be any n+1 points in \w\ ^ 1 . Consider the 
class of functions F(z) regular for \z\ <1 and with \ F(z)\ ^ 1 there. The 
number of such functions satisfying the interpolating conditions 

F(zh) = wk (k = 1, 2, • • • , n) 

may be 0, 1, or oo. If there is just one such function, then it is rational 
of less than the nth degree, and satisfies \ F(z) \ = 1 for \z\ » 1. If there 
are infinitely many such functions, then the possible values ofF(Ç) fill 
a closed circle; the additional condition 

F(fi - « 
will determine the function uniquely if and only if co is on the boundary 
of that circle. 

The proof is by induction. Consider first the case w*=0. The num-
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ber of functions is infinite. The possible values of F(Ç) fill the circle 
\w\ sSl. The condition F(Ç) =co determines F(z) uniquely, if and only 
i f | « | - l . 

Suppose now that n>0. In case \wn\ = 1, if there is any solution 
it is F(z) =«/w, which is a rational function of the zeroth degree and 
satisfies | F(z) \ = 1 for | z\ = 1. In case \wn\ < 1, we establish a one-to-
one correspondence between the given functions and those satisfying 
certain interpolating conditions at the points Si, • • • , £n-i by means 
of the equation 

F(z) - Wn Z - Zn 

G(z) = — : 
1 - WnFiz) 1 - ZnZ 

The various desired conclusions about F(z) follow easily from the 
corresponding conclusions about G(z). 

Study of Problem C. Here the case q <p < 1 has a very simple solu­
tion (but the general case cannot be reduced to it). For if the condi­
tion \f(z) | £p for \z\ =g is replaced by the weaker condition |/(<z)| 
^py then it follows (using Schwarz's lemma) that the maximum pos­
sible value of |/(Q)| is attained by the linear function H(z) which 
maps the unit circle onto itself, with ± 1 as fixed points, and H(q) ~p. 
But this function clearly satisfies |JHT(2)| èp for \z\ =g (under the 
hypothesis q<p<l), and hence is the required extremal function. 

For the general case, Heins reaches his results by a rather indirect 
method. It will be convenient to modify the statement of Problem C 
by supposing that ƒ(z) is regular for \z\ <1 rather than for \z\ ^ 1 . 
The condition \f(z)\ ^ 1 for \z\ = 1 may be replaced by \f(z)\ <1 for 
\z\ <1 . With this modification, the existence of an extremal function 
H(z) is clear from the theory of normal families. It will be shown later 
that this function is unique, regular for | s | =1 , and that |-£?(*)| ==1 
for 1̂ 1 = 1 . 

As a first step, we show that if H{z) is regular for |JS| =1 , then 
|j?(£;)| =1 there. Otherwise, |H(s)| =1 at only a finite number of 
points on \z\ = 1 , and hence we can find a small arc AB of |;s| =1 , 
near 1, where \H(z)\ < 1 . Choose K>1 so that üT|iï(s)| <1 on this 
arc. Now it is easy to construct a function g(z), regular for \z\ ^ 1 
except at A and J5, with constant absolute values on every circular 
arc joining A and B, these values varying from K on the given arc AB 
to 1 on the complementary arc of the unit circle. Since | H(z)g(z) \ ^ 1 
for \z\ = 1 , except at A and J5, and |jff(sf)g(sf)| <1 near these points, 
it follows that \H(z)g(z) \ <1 for \z\ < 1 . The function H{z)g{z) may 
fail to be an admissible ƒ(z) by being too large on | s | ==g. However, 
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g(*) is larger at Q than on |*| «g, so that if we divide H(z)g(z) by 
the maximum of g(z) on | z\ =5, we have a function ƒ(*) which is ad­
missible and for which \f(Q) | > | H{Q) |, which is impossible, 

Next we see that \H{z)\ ~p has only a finite number of roots on 
\z\ =#. For otherwise it would be an identity, and H(z) would be ra­
tional. But then H(z) would also be regular for \z\ =1 , and hence 
| H(z) | = 1 there. From the fact that | H(z) | is constant on two circles, 
we should conclude that H(z) = *n, and hence p = gw, which is the case 
we have excluded. 

We shall now show that in the hypothesis that \f(z)\ Sp for 
\z\ =#, only a finite number of points on \z\ ~q have any weight. 
Let H(z) be an extremal function, and let *i, *2» • • • , Z\ be the points 
on |*| « j where |#(*) | »ƒ>. Then if |P(*) |<1 for \z\ <1 , and 
| F(zk) | £p (k - 1 , 2, • • • , I), we can conclude that | F(Q) \ £P (that 
is, we obtain the same bound for | F(Q) \ as if we had supposed that 
IJFO*)! âïjf> for | * |=g ) . For if there were such a function with 
I F(Q)\ > P , then we could also find a function with | F(zk)\ <P and 
F(Q) >P. But then we see that 

/(i) - (1 - e)H(z) + *F(z) 

is admissible (if e is sufficiently small), 'and that ƒ (Q) >P. 
The next step is to see that H(z) can be determined by interpola­

tion. We shall show that if |^(*) | <1 for \z\ <1 , if F{zh)~H(zk) 
(yfe = l, 2, • • • , /), and if F(Q)=H(Q), then F(z)=H(z) identically. 
Consider first the interpolating problem defined by F{zk) ~H(Zk). The 
possible values of F(Q) are restricted to a circle including P. If P were 
not on the boundary, then F(Q) >P would be possible. Thus P is on 
the boundary, and the additional condition F(Q) ==P serves to deter­
mine F(z) uniquely. 

Thus H(z) is a rational function of at most the /th degree, with 
| i ï (s) | =1 ior |*| = 1 . From this the uniqueness of H(z) follows at 
once. For if both Hx(z) and H2(z) were extremal, then so also would 
be their average. This average must also satisfy the condition 
\H(z)\ =1 for |*| = 1 , which is possible only if Hi(z) -H2(z) on 
|*| =1 and hence identically. Furthermore, if H(z) is extremal, so 
also is 2F(*) ; hence H(z) ==J?(*), or H(z) is real for real *. 

Now consider the degree of H(z). In the first place, | H(z) \ -p has / 
different roots on |*| =g, and these are alL of even order, since 
| H(z) | ^p on | *| =2- In other words, the equation 

H{z)H(qyz) - p* 

has at least 2/ roots, so that H(z) cannot be of less than the /th de-
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gree. Thus H(z) is exactly of the Zth degree, and the roots of the dis­
played equation all lie on \z\ = g, and are double roots. 

As in the introduction, let n be the integer such that w — K\<n. 
We shall give a sketch of the proof that / =*= n. 

In the first place, it is not difficult to show that P is a continuous 
function of q, p1 Q\ and using this fact, it may be shown that (for 
\z\ <1) H(z) depends continuously on these parameters. 

Next we notice that I is a function of n only. For as long as we 
exclude the case in which X is an integer, / is the number of double 
roots of H{z)H(q2/z) — p2 on \z\ = g. Since this function is regular and 
depends continuously on the parameters for q2 < \ z\ < 1, and has roots 
only on \z\ =g, it cannot gain or lose a root. 

Recalling that the degree of H(z) is equal to the number of zeros 
in \z\ < 1 , it is easy to see that the degree is a lower semi-continuous 
function of the parameters. Since the degree is n when X = n, it can­
not be less than n when X is slightly less than n. Combined with the 
preceding result, this shows that l^n. 

Finally, by an ingenious method which we cannot consider here, 
Heins finds (for any given n) some cases in which it can be shown 
that the degree of H(z) does not exceed n. This completes the proof 
that H(z) is of exactly the nth degree when w — K \ < w , and that 
J-HT(js) | —p has exactly n different roots on \z\ =#. 
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