
POWERS OF HOMEOMORPHISMS WITH ALMOST 
PERIODIC PROPERTIES 

W. H. GOTTSCHALK1 

Let X be a topological space (an "accessible space," a "1-space," 
or a " TV-space " in the terminology of Fréchet, Kuratowski, or 
Alexandroff-Hopf, respectively) and let f(X) = X be a homeomor-
phism. We use the following terminology, which was suggested by 
G. A. Hedlund and which is to be carefully distinguished from those 
terminologies used by Birkhoff, Ayres, Whyburn, and others. A point 
x of X is said to be recurrent under ƒ provided that to each neighbor­
hood U of x there corresponds a positive integer n such that fn(x) £ U. 
The mapping ƒ is said to be pointwise recurrent provided that each 
point of X is recurrent under ƒ. A point x of X is said to be almost 
periodic under ƒ provided that to each neighborhood U of x there cor­
responds a monotone increasing sequence nif n2, • • • of positive in­
tegers with the properties that the numbers ni+\—ni (i = l, 2, • • • ) 
are uniformly bounded andƒ**'(#)£ U (i = l, 2, • • • ). The mapping/ 
is said to be pointwise almost periodic provided each point of X is 
almost periodic under/. Following Birkhoff [l, p. 198],2 a subset F 
of X is said to be minimal under ƒ provided that F is nonvacuous, 
closed and invariant under ƒ, that is, ƒ( F) = F, and furthermore F 
does not contain a proper subset with these properties. For xÇzX, the 
set n£±Zfn(x) is called the otbit of x under ƒ and the set ]Cn-°o/n(#) 
is called the semi-orbit of x under/. A decomposition of X is a collection 
of nonvacuous pairwise disjoint closed subsets of X which fill up X. 

THEOREM 1. If xÇLX is recurrent under ff then x is also recurrent 
under fn for every positive integer n. 

PROOF. We make use of an induction. The theorem is true for n = 1. 
Let m be any positive integer. Assume the theorem is true for n^m. 
We now show the theorem is true for n~m + l=k. 

We may suppose without loss of generality that X is the closure 
of the semi-orbit of x under/, for this set is invariant under/. Define 
Xi (i = 0, 1, • • • , k) to be the closure of the semi-orbit of ƒ*"(#) under 
ƒ*. It is readily verified that f(Xi)=*Xi+1 (i = 0, 1, • • • , k-l), 
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fk(Xi)CXi (i = 0, 1, • • • , k), and X=23î -o^- We may suppose that 
xÇ~22ïlîX{9 for otherwise the conclusion follows. Let pil^p^k — l, 
be the smallest integer such that x£:Xp. Then, the semi-orbit of x 
under ƒ* is contained in Xp. Hence, XoC.Xp=fp(Xo) and p is the 
smallest positive integer such that XoC.fp(X0). Since fk(X0)GX0, 
there exists a smallest positive integer t such that ft(Xo)CZXo. Now 
f(Xo)CXoCMXo). Since f^p(X0)CX0 and X 0 C / M * o ) , £ is 
neither less than nor greater than /. Hence, p = t and fp(Xo) =Xo. 
Write & —pq+r, Q^*r<p, where q and r are integers. Now 

Xo D /*(Xo) = f(fpq(Xo)) = /'(Zo). 

Thus, r = 0 and k=pq. If p = l, then X0 = X 1= • • • =X& whence 
#£-X"* and the conclusion follows. We may suppose, therefore, that 
p>l. Now p^m and q^m. By the induction assumption, x is recur­
rent under fp and, applying the induction assumption to fp, # is re­
current under (fp)q=fk. 

COROLLARY 1. Every positive power of a pointwise recurrent homeo­
morphism on a topological space is itself pointwise recurrent. 

Theorem 1 can be used to provide a different proof of the following 
theorem, due to Birkhoff and Smith [2, p. 358, Theorem 3]. 

THEOREM. If X is a compact metric space and iff(X) =X is a homço-
morphism, then for every nonzero integer n the central orbits under fn 

are identical with the central orbits under f . 

This follows from Theorem 1 and the result, due to Birkhoff and 
Smith [2, p. 353, Theorem 2], that the sum of the central orbits under 
a homeomorphism h on a compact metric space is characterized as 
the closure of the set of points recurrent under both h and h~x. Al­
though their results on central orbits [2, pp. 350-355, 356-360] are 
stated for closed surfaces, their proofs are actually valid for compact 
metric spaces. 

THEOREM 2. If X is a compact connected metric space and if the re­
current points are dtnse in X, then every recurrent cut point x of X is 
periodic. 

PROOF. Express X=A +Bf where A and B are nondegenerate con­
tinua such that AB~x. By a theorem due to Kelley [4, p. 194, 
Theorem 3.4] there exists an 7 -̂set (that is, either a simple link, or 
cut point, or end point) Foi X such that ƒ (F) = F. (For properties of 
simple links, see Whyburn [5, pp. 64-65].) Now F is contained in 
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either A or B, say A, and A-fn(A)9£A for every integer n. Since 
some point of B — x is recurrent under/, there exists a positive integer 
n such that Bfn(B) ?*A. By Theorem 1, x is recurrent under ƒn. Ap­
plying a lemma due to Whyburn [5, p. 247, Lemma 4.21], it follows 
that fn(x) —x. The proof is completed. 

Theorem 2 and its proof are partial generalizations of Whyburn 
[5, p. 248, Theorem 4.6], but the original conclusion—that the 
mapping is elementwise periodic on all simple links—is no longer 
valid without semi-local connectedness, even though the mapping be 
regularly almost periodic in the sense of Whyburn [5, p. 250]. Theo­
rem 1, however, may be used as an aid in the proof of the cited theorem. 

Remarks. 1. If the subset F of X is minimal under/, then Y is 
minimal also under f~l. 2. A non vacuous subset Y of X is minimal 
if and only if the closure of the orbit of every point of Y is F. 3. The 
collection of sets minimal under ƒ is a decomposition of X if and only 
if the closure of the orbits under ƒ is a decomposition of X; and, in 
either case, these two collections coincide. In other words, ƒ gives a 
minimal-set decomposition if and only if ƒ gives an orbit-closure decom­
position. 

THEOREM 3. If X is minimal under f but not under p, where k is a 
nonzero integer, then there exists an integer n, n>l, such that n divides 
| k | and fn gives a finite minimal-set decomposition which contains ex­
actly n elements. 

PROOF. By Remark 1, it is sufficient to prove the theorem when k 
is positive. There exists a point x of X such that the orbit of x under ƒk 

is not dense in X, by Remark 2. Define Xi (i = 0, 1, • • • , k — 1) to 
be the closure of the orbit of ƒ *(#) under/*. Clearly, f(Xi)—Xi+i 
(i = 0, 1, • • • , * - 2 ) , f(X^d=Xo, aad f*(Xi)~Xi (*«0, 1, - • • , 
k — 1). Let p be the maximum positive integer such that there exist 
integers ii, i^ • • • , iP with the properties that 0^ i i<e 2 < • • • <H 
Sk — \ and IJjLi-X^.T^A. Choose integers ii, Hy • • • , ip with these 
properties. Define F = I I j - i ^ V Clearly, fk(Y) = Y. Let n be the 
smallest positive integer such that fn(Y)~Y. Define Yj=f}'(Y) 
(j = 0, 1, • • • , n — 1). The sets Fy C/ = 0, 1, • • • , w — 1) are closed and 
pairwise disjoint. Choose y&Y. Then, 

+00 +<» ' n—1 n—1 

x - j Z f'Xy) = j Z fi00 = E SKY) = E Y,. 
—oo —oo ;=»0 ;'a-0 

Thus, Dss [Fy|j = 0, 1, • • • , « — l ] i s a decomposition of X. 
We show n>l. Suppose « = 1. Then, X= F0= F=X t l , and thus 
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X=fk"^{Xi^—fk{X^) ~XQ whence the orbit of x under fk is dense 
in Xy contrary to the second statement of the proof. 

We show that n divides k. Write k =>qn+r, 0£*r<n, where q and r 
are integers. Then, 

F = /*(F) - f(fqn(Y)) - fr(Y). 

Hence, r = 0. 
In order to show that each element Y3- of D is minimal under fn

r 

it is sufficient to observe that for y £ Yj} the orbit of y under ƒ is dense 
in X, D is a decomposition of X whose elements are invariant un­
der ƒn, and the subset of the orbit of y under ƒ which is contained in 
Yj is actually the orbit of y under fn. 

COROLLARY 2. If X is connected and minimal under j', then X is also 
minimal under fn f or every nonzero integer n. 

COROLLARY 3. If X has only finitely manyf say k, components and 
if X is minimal under f f then for every nonzero integer n the mapping fn 

gives a finite minimal-set decomposition, the number of whose elements 
is the greatest common divisor of k and \n\. 

If k = l, Corollary 3 reduces to Corollary 2. If k>l, Corollary 3 
may be proved by first of all considering the case when k~k' and 
n = n'>0 are relatively prime and then extending the result to k~dk' 
and n=an', where a is any positive integer. Corollary 3 essentially 
combines Corollary 2 with a property of cyclic counting or, what is 
the same, a property of periodic orbits. 

THEOREM 4. If X is minimal under ƒ, then for every nonzero integer 
n the mapping ƒw gives a finite minimal-set decomposition of X into at 
most \n\ elements. 

PROOF. By Remark 1, it is sufficient to prove the theorem when n 
is positive. We make use of an induction. The theorem is true for 
n = 1. Let m be any positive integer. Assume the theorem is true for 
n^m. We now show the theorem is true for n — m + l =&. 

If X is minimal under ƒ*, the conclusion follows. Suppose now that 
X is not minimal under ƒ*. By Theorem 3, there exist integers p and q 
such that p>l,k —pq, and fp gives a finite minimal-set decomposition 
D of X into exactly p elements. Let Y be any element of D. Now 
apply the induction assumption to fp(Y) = Y and n=q^m. Thus 
(fp)q=zfk gives a finite minimal-set decomposition of Y into at most q 
elements. Hence, (fp)Q=fk gives a finite minimal-set decomposition 
of X into at most pq — k elements. 
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COROLLARY 4. If the mapping ƒ gives an orbit-closure decomposition 
of Xf then for every integer n the mapping ƒn also gives an orbit-closure 
decomposition of X. 

PROOF. By virtue of Remark 3, it is sufficient to apply Theorem 4 
to the elements of the orbit-closure decomposition given by ƒ. 

LEMMA 1. If X is a metric space and if xÇzX is almost periodic un-
der f y then the closure Y of the orbit of x under f is minimal under j \ 

PROOF. Suppose Y is not minimal. Then, there exists a non vacuous 
closed invariant subset Z of Y such that #(£Z. Choose s £ Z . Let 2 e 
be the distance from x to Z. There exists a positive integer N such 
that in every set of N consecutive positive integers appears an in­
teger n so that p(xff

n(x)) <€, where p is the metric in X. Choose ö>0 
so small that ff'E-X" witli p(s, x')<i implies p(fi(z)f f{(xf))<€ 
(i = l, 2, • • • , N). There exists an integer p^O such that p(zt fp(x)) 
<8. Also it is possible to find an integer #, l^q^N, so that 
p(x, f*+q(x))<e. Furthermore, p(fq(z)y f*+q(x)) <e. Hence, p(Xyfq(z)) 
<2e which is impossible because fq(z) £ Z . 

LEMMA 2. If X is a compact metric space and if f gives an orbit-
closure décomposition, then f is pointwise almost periodic. 

PROOF. Suppose that some point x of X is not almost periodic. Then 
there exist a neighborhood Uoîx and a sequence m\% m^y • • • of posi­
tive integers such that U'^flJmi+i(x) =A (i==l, 2, • • • ). We may 
suppose that the sequence \fmi(x)} converges to some point, say y y 
of X. It is easy to show that the orbit of y is contained in X—U. 
Hence, the closure of the orbit of y is a proper subset of the closure 
of the orbit of x. This is impossible. 

THEOREM 5. If X is a metric space, then in order that f give an orbit-
closure decomposition it is sufficient that f be pointwise almost periodic; 
and in case X is compact9 this condition is also necessary. 

The proof follows easily from Lemmas 1 and 2 and Remark 3. 
Theorem 5 and Lemmas 1 and 2 are closely related to Hall and Kelley 
[3, p. 628, Theorem 4] and to Birkhoff [l, p. 199]. 

THEOREM 6. Every power (including negative powers) of a pointwise 
almost periodic homeomorphism on a compact metric space is itself point-
wise almost periodic. 

The proof follows readily from Theorem 5 and Corollary 4. 

THEOREM 7. If X is a compact metric space and if xÇîX is almost 
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periodic under j \ then x is also almost periodic under fn for every integer n. 

The proof proceeds easily from Lemma 1, Remark 2, and Theo­
rems 5 and 6. 
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SOME PROPERTIES OF SUMMABILITY. II1 

J. D. HILL 

1. Summability of bounded sequences. I t follows from a well 
known result of H. Steinhaus2 that no regular matrix method of 
summability can be effective for (that is, assign a finite limit to) 
every element in the space (m) of bounded sequences. The object 
of this note is to consider some questions suggested by this fact. The 
first of these may be formulated as follows. If A is a given regular 
matrix method let J A denote the set of all -4-summable bounded se­
quences. We then ask what are necessary and sufficient conditions 
on a subset E of (m) in order that there exist a regular A such that 
EQJA? In Theorem 1 below it is shown that the separability of E 
is a sufficient condition. I t seems unlikely that this condition is neces­
sary although we have been unable to decide the question. I t is clearly 
equivalent to the question of whether every J A is separable. 

THEOREM 1. Let E be an arbitrary separable subset of (m). Then 
every regular matrix A = (amk) contains a (necessarily regular) row-sub-
matrix B = (amih) such that ECZJB* 
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