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1. Introduction. A series ̂ ian is called Abel summable to the value 
^ if the power series ^anr

n converges for 0 <r < 1, and if ̂ 2anr
n-^s as 

r Î 1 ; it is called Lebesgue summable if the sine series 

A sin nt 
(1.1) £ a » = F(t) 

î n 

converges in some interval 0 < / < r , and if 

(1.2) t-lF{t)-*s as UO. 

We write in the first case À^dn — s, and in the latter case LX)an = s 
(summability A or L respectively). It is known that convergence 
does not imply Z-summability and conversely L-summability does 
not imply convergence of ]T)a». Tauberian type problems which arise 
out of this situation have been discussed.1 It is also known that either 
convergence or Z-summability imply A -summability. As to the con­
verse (restricting ourselves to real an) we have proved the following 
theorems : 

THEOREM 1. [8, pp. 582-583]. If 
In 

(1.3) ]£ (| <h\ — av) = 0(1) as w-r+oo, 
n 

and if 

(1.4) Z>nfw = 0(l) as r î l , 
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1 See [8], where further references are given; numbers in brackets refer to the 
bibliography at the end of this paper. 
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then 

(1.5) t~lF(t) = 0 ( 1 ) as UO. 

THEOREM 2. [8, p. 585]. If (1.3) holds and if 

k 

(1.6) lim lim inf min ]T) aP ~ 0, 

/Aew A-summability implies L-summability. 

Note that ^4-summability and (1.6) (without (1.3), which need not 
be satisfied) imply convergence (by a theorem of R. Schmidt) and 
are also necessary for convergence, while the series need not be L-
summable. 

We remark also that, in the assumption and in the conclusion of 
Theorem 1, 0(1) can be replaced by o(l); for if 

In 

(1.7) X^ ( I a» I ~" a*) = 0(1) a s w —> 0 0 , 
n 

then (1.6) holds. Moreover by the previous remark the series 2 a „ 
converges (to zero). 

We shall complete and generalize these results by proving the fol­
lowing theorems: 

THEOREM 3. If (1.3) holds then each of the statements (1.4), (1.5) and 
n 

(1.8) ] £ Ö „ = 0 ( 1 ) as n~-><x> 
1 

implies the two others. 

THEOREM 4. If (1.3) holds then A-summability implies L-summabil­
ity, but not necessarily convergence. 

THEOREM 5. If (1.3) holds and if ^an converges, then ^2an sin nt/nt 
converges uniformly in 0<t<w. 

This generalizes Theorem 6' of my paper [8]. 

2. Proof of Theorem 3. We prove the following lemma. 

Lemma 1. If (1.3) and (1.4) hold, then 

(2.1) sn= X>, = 0(1), Z U I =0(1), 2>l* l =0W, 
l w 1 

00 00 

(2.2) J^v-1] av\ < 00, X) ^ I a* I = O^- 1 ) as * - > 00. 
1 n 
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The statement sn = 0(l) is an immediate corollary of a previous 
result [6, Lemma 2]. Combining it with (1.3) we get 

2w 2n 

Z I av I = Z ( I a» I — a") + s*n — sw-i = 0(1) as n —» oo. 
n. n. 

Furthermore, where T^f means summation over the range a<v£fi, 

n n w/2fc n / ft nt2k \ 

Z H <h\ = Z Z H <*>l ^ Z(— Z U*l) 
1 &=0 n / 2 * * 1 &=0 \ ^ n / 2 * + 1 / 

= 0 ( n Z 2 - M = 0(if). 

(2.1) is now proved. We have thus Zn* 1^1 <£> a positive constant, 
and Z n ^ " " 1 1 ^ | <c/w, hence 

n n 2& 00 

Z ^ k l ^ I Ê^k l<c l2 1 -* = 2c. 
This proves the first part of (2.2). Finally 

00 00 n - 2 * r 00 2c 

E ^ k l ^ E E H*l<-2>-* = - , 
n &=1 n-2k~l ft 1 W 

which proves the lemma. 
We now prove Theorem 3. If (1.3) holds, then (1.8) implies (1.5) 

by Theorem 5 of my paper [8], and (1.4) follows from the remark 
to the same theorem. By the same remark (1.4) implies (1.8), hence 
also (1.5). Finally, assuming (1.5), to prove (1.8) we write 

JL /sin vt \ JL sin vt 
rlF(t) - sn = Z M 1 ) + Z (h = Sx + S2. 

1 \ Vt / „+! vt 

From 0 < 1 —sin vt/vt <vH2 we get 

n n 

| S i | < * 2 Z "21 <*v I < ^ 2 Z " I <*> I = W(w 2 ) ; 
1 1 

furthermore, by Lemma 1, 

00 

\St\ < rlY, " _ I I <h | = Oin-H-1). 
n 

On putting now / = w~1 we get 

nF(n"1) — sn = 0(1) as w —> <*> ; 
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this proves (1.8) and a fortiori (1.4), which completes the proof of 
Theorem 3. 

3. Proof of Theorem 4. We first prove the following lemmas. 

LEMMA 2. Let 

An = sin nt/nt — sin (n + l)t/(n + 1)/, 

A2
n = A(An) = sin nt/nt - 2 sin (n + l)t/(n + 1)/ 

+ sin (n + 2)t/(n + 2)/; 
then 

(3.1) 0 < A* < t for (n + 2)t < T / 2 , 

(3.2) | An | < 2/n for nt > 1. 

Applying the mean value theorem to A2 we get easily (see [8, 
Lemma 4]) 

0 < Aw < t for (n + 2)t < TT/2. 

Furthermore 

sin (n + l)t sin (t/2) cos ((2» + l)*/2) 
An = 2 ; 

w(w + 1)/ nt 
which yields 

| An | < l/n(n + 1)/ + 1/n < 2/n for w/ > 1. 

LEMMA 3. If^an is Abel summable and if (1.3) holds, then ^an is 
Cesar o summable of any order a>0. 

By Lemma 1, sn = 0(l); this and A -summability imply (C, 1) sum­
mability, as was proved first by Littlewood in 1910. For a short proof 
(with a more general assumption) cf. [5]. That Abel summability 
and sn = 0(l) imply (C, a) summability for any a>0 has been proved 
by Andersen [l, p. 80]. We shall apply only the case a = 1. 

Let now ^2ïs„ = Sn , then n~lSn tends to a limit s; we can assume 
without loss of generality that s = 0 (otherwise replace a\ by ai—s). 
To a given positive e < 1/2 we now choose no(e) so that 

(3.3) | sn' I < ezn for n > n0(e) > 3. 

By (2.2) ^2,v~lav sin vt converges absolutely; we write 

* sin vt JL " 
t~*F(t) = £ a, = X + £ m Tx + T2. 

1 Pt l n+l 
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We restrict ourselves to 0<t<nô1
1 and choose n = 1 + [e""1/""1 ] 

>e~~H~~1>€~1riQ>2no\ Abel's summation by parts yields 

sin nt VÏ / 2 

nt i 

Now nt>€~1. Hence 

(3.4) | sn sin nt/nt \ < \ sn \ /nt < e \ sn | = €0(1) as / i 0, 

and, from (3.2) and (3.3), 

(3.5) l ^ - i A ^ i l <2€ 3 ; 

furthermore 
00 

(3.6) | T21 < t~1X) r11 a, | = Oin^r1) = 0(€) as U 0. 

Finally, write 
n— 2 / ifc—1 w—2\ 

1 \ 1 k / 

and choose 

k = 1 + [ r 1 ] > r 1 > »o(«) > 3. 

By (3.1), as ( / f e+ l ) /< (2+r 1 )<<3 /2< i r /2 , 

(3.7) 
f A 2 2 

2>UJ <* 231^1 = *(**) = *(i). 

I t remains to estimate XÜ2 2^A^. We decompose this sum according 
to the changes of sign of the factors A ,̂ and write 

i ; sti = Z + E + • • • + E-
A; 1 2 p 

To estimate p we note that there are not more changes of sign in the 
sequence Â  than there are zeros Xi, X2, * • • of D%(xrl sin x) in the 
interval 0 <x<(n — l)t. A simple calculation yields for xv the estimate 

* , = ( * + 1)TT - f„ 0 < f, < TT/3, y = 1, 2, 3, • • • ; 

hence, 
pw < xp < (n — 1)/ < c"1. 

But each ]T) is in absolute value less than 4eznk~x (from (3.2) and 
(3.3)), and 
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ênk~l < ênt < 2e2; 

thus 

(3.8) Es/A2, < 2P€ < €. 

Collecting the estimates (3.4) to (3.8) we find 

| r ^ ( / ) | <eO(l) + o(l) as U 0 ; 

e being arbitrarily small the positive part of Theorem 4 follows. For 
the negative part we refer to the examples in §5. 

4. Proof of Theorem 5. We write, for A > 1 , 

sin vt Xn 

E a»' 
n+l vt 

E + E = *i + *2, 

say; then by (2.2) 

J?2 < r1 £ "-1 

y>Xn 

a, | = — 0 ( 1 ) . 
\nt 

Abel's summation by parts yields 

^ sin vt sin nt 
/ j &v ==: Sn 

i vt nt 
+ Evv 

whence 
n+* sin vt sin (w + £)/ sin nt " l^" 1 

n+i vt O + k)t nt 

We may assume that the limit of sn is zero; given e>0 , we choose 
no(e) so that \sn\ <€3 for n>n0; then 

sin (n + k)t sin w/ 

(n + k)t nt 
< 2e3 for n > n0(e). 

We define k by n+k=\\n]f thus & = [Xw]—w^(X — l)w. We sub­
divide the range nSv<\n into consecutive parts in each of which 
A„ has constant sign ; denote the number of subdivisions by cr. Denot­
ing the positive zeros of u~x sin u by m<U2< • • • , we find easily 
uy = pw+av, where 0<a„<7r /2 ; the number of zeros in the interval 
nt<u<\nt is therefore less than 2\nt/Tf and 

o- g \nt + 2. 
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In each section |XXA„| <2e8, hence 

and 

n+k-l 

J2 s>&' < 2€
3(2 + \nt), 

Ri\ < 2e3(3 + \nt). 

We now choose \ = l/e2ntf for whatever n>nQ{€) and any 0</<7r , 
if ênt<l, and put X = l (that is i?i=0) otherwise. In the latter case 
IJ^n+i^ sin (vt)/vt\ <(nt)~lO(\) <ê0(\), while in the first case 

n+1 

sin vt 

vt 
< c20(l) + 2e3 

(-7) < «0(1) 

for n >w0(e) and 0< /<7r . This proves our theorem. 
Note that convergence of X)an is a necessary condition for the uni­

form convergence of ^an sin (nt)/nt. For if, for any €>0, 

n+* sin *>/ 

n+1 ^ 
< € for n > tio(e)y k = 1, 2, 3, • • • , 0 < / < w, 

then, letting / { 0 we get |2Z»+Ï^| ^ € - Moreover we have uniform 
convergence in the closed interval. 

I t is shown easily that the assumption (1.3) is equivalent to either 
of the following conditions : There exists a constant X > 1 such that 

(4.1) 

(4.2) 

E(U| -a„)=0( l ) ; 
n 

n 

^2 v{ J av J — av) = 0{n)y as n —» 00. 

For a more general statement see [7, p. 129]. 
A consequence of our results is the following theorem: 

THEOREM 6. If 

(4.3) 
Xn 

lim lim sup T) ( | av | — av) = 0, 

/Z^w A-summability of^an implies uniform convergence of the series 
^2an sin (nt)/ntinO<t<ir. 

Clearly (4.3) implies (4.1), whence (1.3). Now, by Theorem 4, 
X^ön is Z-summable; furthermore by Theorem 4 of our paper [8] 
i-summabili ty and (4.3) imply convergence of ^ a w . Theorem 6 now 
follows from Theorem 5. 



892 OTTO SZASZ [December 

5. Negative results. We quote the following lemma. 

LEMMA 4. Let w à 1 and 

1 z zn~l zn z2n~l 

n n — 1 1 1 n 

then, when \z\ 5J1, 
| Pn{z) | < 6. 

For the proof see Fejér [2, pp. 36-37]. 
Consider the polynomial series ^2rn~2z^nPkn(z), where Xi = 1, £i = 3, 

2X„ = 2w2, 2^n=Xn+i~Xw, n^2. In view of the above lemma the series 
converges uniformly in |g| g l , so that the function 

F{z) = J2 n-h^Pkn(z) 
i 

is regular in \z\ < 1 and continuous in |^| rgl. The degree of the nth 
term is 2&n+Xn--1 <Xw+i, hence writing out the polynomials explicitly 
we get a power series, convergent for \z\ < 1 , 

(5.1) F{z) = J^anz\ 

For \z\ = 1 we get a Fourier power series of a continuous function 
F(eu). The structure of Pn and the inequality (w + l)~2 log &w<log 2 
easily yield 

X) I °>v | = 0(1) as n —» oo. 
n 

B u t t o n diverges, as there are sections ^av = n-^T%nl/v which do not 
tend to zero. On the other hand the series (S.l) is evidently L-sum-
mable at every point on \z\ = 1 . 

Next we define a series ]T]aw by putting s w = l for n = 2k
y k = 0, 1, 

2, • • • , and sn = 0 otherwise. Now «""^Jy,,—»0, moreover ]CnW|a"l ^ 3 , 
hence the series is summable L. B u t ^ a n diverges, in fact lim sup |an \ 
= 1, and Ylan cos nt is not a Fourier series. 

Another example of this kind is due to Neder [4]. 
In contrast Menchoff [3] tried to prove that ^4-summability and 

(1.3) imply convergence of ^ a w ; the error lies in his Lemma 4 which 
is false. I t is based on a false interpretation of an argument used by 
Landau. 
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