
SET-COORDINATES FOR LATTICES1 

ALAN D. CAMPBELL 

On p. 26 of Garrett Birkhoff's Lattice theory (Amer. Math. Soc. Col­
loquium Publications, vol. 25, 1939) we find the following theorem. 

THEOREM 2.12. Any partially ordered system has a one-one represen­
tation by sets which preserves inclusion and meets. 

In the proof of the above theorem each element of the partially 
ordered system is represented by its "normal hull." We shall call this 
the regular representation. 

DEFINITION 1. By a representation by sets of the elements of a lattice 
L we mean any one-one representation by sets which preserves inclusion 
and carries meets into set-products. 

The above-mentioned regular representation is by no means the 
most economical. The following illustration bears out this point by 
using ten elements instead of the twenty-eight required by the regular 
representation. 

ILLUSTRATION 1. In the following manner we can represent the lat­
tice in Figure 5 on p. 49 of Birkhoff (loc. cit.) by suitable set-coordi­
nates (using sets of integers) : 

0 = ( ),vs = (l),v2 = (2),v1 = (3), 
d1 = ( l , 2 ) , A = ( l , 3 ) , d , = (2,3), 
ai-=(l , 2, 4), 02 = (1, 3, 5), d = (l , 2, 3), a, = (2, 3, 6), 
*i = (l , 2, 4, 7), x2 = (l , 3, 5, 8), ex = (l , 2, 3, 4), * = (1, 2, 3, 5), 

e3 = ( l , 2 , 3,6), * , = (2, 3, 6, 9), 
&i = (l , 2, 3, 4, 7), &2=.(1, 2, 3, 5, 8), 
c = (l,2, 3, 4, 5, 6),&, = (1, 2, 3, 6, 9), 
Cl = (1, 2, 3, 4, 5, 6, 7), c2 = (1, 2, 3, 4, 5, 6, 8), *, = (1, 2, 3, 4, 5, 6, 9), 
«a = ( l , 2, 3, 4, 5, 6, 7, 8), «2 = (1, 2, 3, 4, 5, 6, 7, 9), *i = (l , 2,3, 

4, 5, 6, 8, 9), 
7 = ( 1 , 2 , 3 , 4 , 5 , 6 , 7 ,8 ,9) . 
We remark that only nine elements (the integers 1, 2, 3, 4, 5, 6, 7, 

8, 9) together with certain of the "sums" of these integers are neces­
sary to represent this lattice (instead of the twenty-eight elements in 
the given Hasse diagram required in the regular representation). 
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DEFINITION 2. By a simple join in a lattice L we mean the join of a 
collection y of elements in L if this join goes by every representation by 
sets into the sum of the sets corresponding to the elements of y. 

ILLUSTRATION 2. Let a general finite lattice Z, have join-irreducible 
elements (or atoms) #i, a2, • • • , an. We define the set-coordinate of 
any xÇ.L as the set of integers i such that ai^x. Suppose that an 
atom 2 has above it a chain of two elements that are not joins of 
atoms, we can label these elements (2, n + 1) and (2, n + l> n+2). 
If the atoms 3, 4, and 5 have a common simple join (that is also the 
join of each of the pairs 3, 4 and 3, 5 and 4, 5), then the lattice has no 
elements (3, 4), (3, 5), and (4, 5) but has an element (3, 4, 5). 

We define the representation of Illustration 2 as the economical 
representation of L> to contrast it with the regular representation. 
I t is an unsolved problem whether or not the economical representa­
tion actually involves the fewest possible points as set-coordinates. 

Note the fact (compare Birkhoff, loc. cit., p. 26) that there exists 
no one-one representation of a lattice L by sets which carries all meets 
of elements into set-products and also all joins into set-unions, unless 
L is distributive. Also there exist representations of the elements of L 
by sets which preserve inclusion without sending meets into set-prod­
ucts or joins into set-unions. 

We shall denote the product (intersection) of two sets x and y 
by x-y, the union (sum) of two sets x and y by (x, y), and the fact 
that a set z includes a set why z^w. We shall denote the empty set 
by 0. If two sets u and v have no intersection except the empty set, 
we shall say that u and v have the product 0 (in algebraic form 
u-v = 0). If the element u of L corresponds to the set-product x-y, 
we write this fact as u=x-y or u< >x-y. By the expression x—y we 
mean the set x diminished by the part of the set y that is included 
in x. If x>y we shall say that x is "over" y and that y is "under" x. 

The least upper bound (or join) of any collection a of elements in 
a lattice L may include elements which are not in a, nor under2 a, 
nor simple joins of elements in a, nor simple joins of elements under a. 
Let j8 denote the set of all such elements. In this case we cannot 
represent the join of the elements of a by the sum of the sets corre­
sponding to these elements in any representation of L by sets. If in 
such a representation of L by sets we denote by a the sum of the sets 
corresponding to the elements of the collection a in L (and similarly 
for j8), we shall put $ — a = aa (hence we have a-a a = 0), and then we 
have the following theorem. 

2 By "under a" we mean having a as a set of upper bounds, see Definition 2. 



Ï9431 SET-COORDINATES FOR LATTICES 397 

THEOREM 1. Suppose we have a representation of the elements of a 
lattice L by sets. Then the meet of a collection a of elements of L will be 
represented by the product of the sets of the set-union a, which correspond 
to the elements of the collection ce. The join of the elements of a will be 
represented by the set (ce, aa) where the set aa = J3—& and where the set-
union $ corresponds to the totality (3 of elements in L that are included 
in the join of a and yet are not in ce, nor under ce, nor are they simple 
joins of elements under ce. 

PROOF. The part of the proof that concerns the meet of ce follows 
directly from the fact that our representation by sets carries meets 
into set-products. The part of the proof that concerns the join of ce 
follows from the uniqueness of the join of ce, plus the uniqueness of 
the set (ce, aa), plus the fact that the set (ce, aa) is the least upper 
bound of the sets ce and /?, and plus the fact that our representation 
of elements of L by sets is one-one and preserves inclusion. 

DEFINITION 3. By set-coordinates of the elements of any lattice L in 
any representation of L by sets we mean the sets corresponding to these 
elements. 

If xKJy = (x, y, aXfV) then from the paragraph on joins we see that 
ax>y = ay,x, also that ax,y = 0 if ySx. Moreover ax,y = 0 if and only if 
x^Jy contains no Zi that have neither x nor y as an upper bound 
and that are not simple joins of elements under x and y. The 
relation xVJ(y\Jz) = (x\Jy)]Uz — xVJy\Jz implies the relation 
(x, y, z, aVtZ, ax>yöz) = (x, y, z, ax,yi aXtVXJZ) = (x, y, z, ax,y>z) because 
x\J(y\Jz)< >(x, y, z, ay<zi ax,yUz) and (x\Jy)\Jz< >(x, y> z, axUv, 
dx\jVlz) and x\Jy\Jz< >(#, y, z, aXtVfZ). 

Now we shall prove some more theorems that will be of use in 
applying these set-coordinates to the study of lattices. 

THEOREM 2. For any three elements x, y, and z of L we have (in set-
coordinates) X'ay>z^ax.y%x.z. 

PROOF. From the latter part of Corollary 1 on p. 22 of Birkhoff 
(loc. cit.) we see that for any such x, y, z oî L we have xC\(y^Jz) 
^(xr\y)\J(xC\z). In set-coordinates this inequality becomes 
x- {y, z, aVyZ) = (x-y, x-z, x-ay,g) ^(x-y, x-z, ax.VtX.z) or briefly x-ayiZ 

•=.ax.yyX. z. 

THEOREM 3. The lattice L is a modular lattice if and only if f or x^z 
in L and f or y any other element of L we have X'ay,z — ax.y,z (in set-
coordinates). 
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PROOF. On p. 34 of Birkhoff (loc. cit.) we find that for L to be 
modular we must have (for x ^z and for y any other element in L) the 
equality xC\(y\Jz) = (xC\y)\Jz. In set-coordinates this equality be­
comes x-(y, z, ay>z) = (x-y, x-z, x-ay%z) = (x-y, z, ax.y,z) or finally 
(since x^z) x-aytZ = ax.ytZ. 

THEOREM 4. The lattice L is a distributive lattice if and only if f or y 
and z any two elements of L we have aVtZ = 0 (in set-coordinates). 

PROOF. On p. 74 of Birkhoff (loc. cit.) we find that one necessary 
and sufficient condition for I to be a distributive lattice is that for 
all x, y, and z in L we have xr\(y\Jz) = (xr^y)\J(xr}z). In set-
coordinates this condition is x-(y, zy aVlZ) — (x-y, x-z, x-ay>z) 
= (x-y, x-Zj ax.y>x.z) for all x, y> and z, or X'ay>z=*ax.ytX.z or finally 
(since x, y and z are arbitrary elements of L) we have aVtZ — 0 for all 
y and z in L. 

We note that Theorem 4 asserts that a lattice is distributive if and 
only if every join is a simple join, and that a lattice is distributive if 
and only if the economical representation is join-true. 

ILLUSTRATION 3. We can start in a general lattice from any set of 
"independent" elements and proceed as in Illustration 2 and thus ob­
tain the part of the lattice "above" these independent elements. 

ILLUSTRATION 4. The general complemented distributive lattice 
with n atoms can readily be represented as follows. Here every join 
is a simple join. The atoms are 1, 2, • • • , n. Above the atoms are 
the elements (1, 2), (1, 3), • • • , (n — 1, n). Above these elements are 
(1, 2, 3), • • • , and so forth up to / = ( ! , 2, 3, • • • , n). 
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