ON THE LEAST SOLUTION OF PELL'S EQUATION

LOO-KENG HUA

Let x_0 , y_0 be the least positive solution of Pell's equation

$$x^2-dv^2=4,$$

where d is a positive integer, not a square, congruent to 0 or 1 (mod 4). Let $\epsilon = (x_0 + d^{1/2}y_0)/2$. It was proved by Schur¹ that

$$\epsilon < d^{d^{1/2}},$$

or, more precisely,

(2)
$$\log \epsilon < d^{1/2}((1/2) \log d + (1/2) \log \log d + 1)$$
.

He deduced (1) from (2) by the property that

$$d^{1/2}((1/2)\log d + (1/2)\log\log d + 1) < d^{1/2}\log d$$

for d > 244. 69 · · · , and, for $d \le 244$, (1) is established by direct computation. It is the object of the present note to establish a slightly better result that

(3)
$$\log \epsilon < d^{1/2}((1/2) \log d + 1).$$

Thus (1) follows immediately without any calculation. The method used is that described in the preceding paper.

Let $(d \mid r)$ be Kronecker's symbol. (We extend the definition to include negative values of r by the relation $(d \mid r_1) = (d \mid r_2)$ for $r_1 \equiv r_2 \pmod{d}$.)

Let f denote the fundamental discriminant related to d, that is,

$$d=m^2f$$

where f is not divisible by a square of odd prime and is either odd, or congruent to 8 or congruent to 12 (mod 16).

LEMMA 1. For d > 0, we have

$$\left(\frac{d}{r}\right) = \left(\frac{d}{-r}\right).$$

Proof. Landau, Vorlesungen über Zahlentheorie, vol. 1, Theorem 101.

LEMMA 2. We have

Received by the editors December 3, 1941.

¹ Göttingen Nachrichter, 1918, pp. 30-36.

$$\sum_{r} \left(\frac{f}{r}\right) e^{2\pi i n r/f} = \left(\frac{f}{n}\right) f^{1/2},$$

where r runs over a complete residue system, mod f.

PROOF. Landau, loc. cit.. Theorem 215.

LEMMA 3. We have

$$\left| \frac{1}{A^* + 1} \right| \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{f}{n} \right) \right| \le \frac{1}{2} \left(f^{1/2} - \frac{A^* + 1}{f^{1/2}} \right),$$

where A^* is the least positive residue of A, mod f.

PROOF. (See Lemma 1 of the preceding paper.) We have, by Lemma 2,

$$f^{1/2} \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{f}{n} \right) = \frac{1}{2} f^{1/2} \sum_{a=0}^{A} \sum_{n=-a}^{a} \left(\frac{f}{n} \right)$$

$$= \frac{1}{2} \sum_{a=0}^{A} \sum_{n=-a}^{a} \sum_{r=1}^{f} \left(\frac{f}{r} \right) e^{2\pi i n r / f}$$

$$= \frac{1}{2} \sum_{r=1}^{f} \left(\frac{f}{r} \right) \sum_{n=0}^{A} \sum_{r=a}^{a} e^{2\pi i n r / f}.$$

Then

$$\begin{aligned} f^{1/2} \left| \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{f}{n} \right) \right| &\leq \frac{1}{2} \sum_{r=1}^{f-1} \left| \sum_{a=0}^{A} \sum_{n=-a}^{a} e^{2\pi i n r / f} \right| \\ &= \frac{1}{2} \sum_{r=1}^{f-1} \left(\frac{\sin (A+1)\pi r / f}{\sin \pi r / f} \right)^{2} \\ &= \frac{1}{2} \sum_{r=1}^{f-1} \left(\frac{\sin (A^{*}+1)\pi r / f}{\sin \pi r / f} \right)^{2} \\ &= \frac{1}{2} \sum_{r=1}^{f-1} \sum_{a=0}^{A^{*}} \sum_{n=-a}^{a} e^{2\pi i n r / f} \\ &= \frac{1}{2} \left((A^{*}+1)f - (A^{*}+1)^{2} \right), \end{aligned}$$

since

$$\sum_{r=1}^{f-1} e^{2\pi i n r/f} = \sum_{r=1}^{f} e^{2\pi i n r/f} - 1 = \begin{cases} -1 & \text{if } f \nmid n, \\ f-1 & \text{if } f \mid n. \end{cases}$$

LEMMA 4. For any discriminant d>0 and $A>d^{1/2}$, we have

$$\left| \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{d}{n} \right) \right| \le \frac{1}{2} A d^{1/2}.$$

Proof. It is well known that2

$$\left(\frac{d}{n}\right) = \left(\frac{f}{n}\right) \sum_{r \mid (m, r)} \mu(r).$$

Then

$$\begin{split} \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{d}{n} \right) &= \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{f}{n} \right) \sum_{r \mid (m,n)} \mu(r) \\ &= \sum_{r \mid m} \mu(r) \sum_{a=1}^{A} \sum_{n=1, r \mid n}^{a} \left(\frac{f}{n} \right) = \sum_{r \mid m} \mu(r) \sum_{a=1}^{A} \sum_{n=1}^{[a/r]} \left(\frac{f}{rn} \right) \\ &= \sum_{r \mid m} \mu(r) \left(\frac{f}{r} \right) \sum_{a=1}^{A} \sum_{n=1}^{[a/r]} \left(\frac{f}{n} \right). \end{split}$$

Then, by Lemma 2,

$$\left| \sum_{a=1}^{A} \sum_{n=1}^{a} \left(\frac{d}{n} \right) \right| \leq \frac{1}{2} \sum_{r|m} \left| \sum_{a=1}^{A} \sum_{n=1}^{\lceil a/r \rceil} \left(\frac{f}{n} \right) \right|$$

$$\leq \frac{1}{2} \sum_{r|m} r \left| \sum_{b=1}^{\lceil A/r \rceil} \sum_{n=1}^{b} \left(\frac{f}{n} \right) \right|$$

$$\leq \frac{1}{2} \sum_{r|m} r \left(\left(\left[\frac{A}{r} \right] + 1 \right) f^{1/2} - \frac{1}{f^{1/2}} \left(\left[\frac{A}{r} \right] + 1 \right)^{2} \right)$$

$$\leq \frac{1}{2} \sum_{r|m} r \cdot \frac{A}{r} f^{1/2} \leq \frac{1}{2} A f^{1/2} m = \frac{1}{2} A d^{1/2},$$

since we have $f^{1/2}r < f^{1/2}m < A$,

$$f^{1/2} - \frac{1}{f^{1/2}} \left(\left[\frac{A}{r} \right] + 1 \right)^2 < f^{1/2} - \frac{1}{f^{1/2}} \cdot f = 0$$

and

$$\sum_{n \mid m} 1 \leq m.$$

LEMMA 5. We have

$$\sum_{n=1}^{\infty} \left(\frac{d}{n}\right) \frac{1}{n} < \frac{1}{2} \log d + 1.$$

² This follows from the fact that $\sum_{d|a}\mu(d)=0$ or 1 according as a>1 or a=1.

PROOF. For $n \ge 1$ let

$$S(n) = \sum_{a=1}^{n} \sum_{m=1}^{a} \left(\frac{d}{m}\right),$$

and let S(0) = S(-1) = 0. Then we have

$$S(n) - 2S(n-1) + S(n-2) = \left(\frac{d}{n}\right), \qquad n \ge 1,$$

and

$$\sum_{n=1}^{\infty} \left(\frac{d}{n}\right) \frac{1}{n} = \sum_{n=1}^{\infty} \left\{ S(n) - 2S(n-1) + S(n-2) \right\} \frac{1}{n}$$

$$= \sum_{n=1}^{\infty} S(n) \left(\frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2}\right)$$

$$= \sum_{n=1}^{\infty} \frac{2S(n)}{n(n+1)(n+2)}.$$

We divide the series into two parts

$$S_1 = \sum_{i=1}^{A-1}, \qquad S_2 = \sum_{i=1}^{\infty}.$$

Since

$$|S(n)| \leq \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} 1 = \frac{n(n+1)}{2}$$

it follows that

$$|S_1| \le \sum_{n=1}^{A-1} \frac{1}{n+2}.$$

If $A > d^{1/2}$ we have by Lemma 4

$$|S_2| < \sum_{n=4}^{\infty} \frac{nd^{1/2}}{n(n+1)(n+2)} = \frac{d^{1/2}}{A+1}$$

Hence

$$\left| \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n} \right| \leq \sum_{n=1}^{A-1} \frac{1}{n+2} + \frac{d^{1/2}}{A+1}$$

$$= \sum_{m=1}^{A-1} \frac{1}{m} - 1 - \frac{1}{2} + \frac{1}{A} + \frac{1}{A+1} + \frac{d^{1/2}}{A+1}$$

$$\leq \log (A-1) - \frac{1}{2} + \frac{1}{A} + \frac{d^{1/2}+1}{A+1}.$$

Taking $A = [d^{1/2}] + 1$ we have

$$\left| \sum_{n=1}^{\infty} \left(\frac{d}{n} \right) \frac{1}{n} \right| \le \log d^{1/2} - \frac{1}{2} + \frac{1}{d^{1/2}} + \frac{d^{1/2} + 1}{d^{1/2} + 1}$$

$$= \frac{1}{2} \log d + \frac{1}{2} + \frac{1}{d^{1/2}} < \frac{1}{2} \log d + 1$$

since $d \ge 5$.

THEOREM 1. We have

$$\log \epsilon < d^{1/2}((1/2) \log d + 1).$$

PROOF. It is known that the number h(d) of classes of non-equivalent quadratic forms with determinant d > 0, is given by

$$h(d) = \frac{d^{1/2}}{\log \epsilon} \sum_{n=1}^{\infty} \left(\frac{d}{n}\right) \frac{1}{n} \cdot$$

Since $h(d) \ge 1$, we have the theorem.

THEOREM 2 (Schur). We have

$$\log \epsilon \le d^{1/2} \log d.$$

PROOF. For $d > e^2$, the theorem follows from Theorem 1. If $d < e^2$, then d = 5. Evidently $\epsilon = (3 + 5^{1/2})/2$ and

$$\log \epsilon < 5^{1/2} \log 5.$$

NATIONAL TSING HUA UNIVERSITY