
ON THE LEAST SOLUTION OF PELL'S EQUATION 

LOO-KENG HUA 

Let x0i yo be the least positive solution of Pell's equation 

x2 _ dy2 = 4 j 

where d is a positive integer, not a square, congruent to 0 or 1 (mod 4). 
Let e = (xo+d1/2y0)/2. I t was proved by Schur1 that 

(1) • € < ddll\ 

or, more precisely, 

(2) log € < rf1/2((l/2) log d + (1/2) log log d + 1) . 

He deduced (1) from (2) by the property that 

<P'2((l/2) log d + (1/2) log log d+1) < d1'2 log d 

for d > 244. 69 • • • , and, for ^ ^ 2 4 4 , (1) is established by direct com­
putation. I t is the object of the present note to establish a slightly 
better result that 

(3) log e < <P"((l/2) log d + 1). 

Thus (1) follows immediately without any calculation. The method 
used is that described in the preceding paper. 

Let (d\r) be Kronecker's symbol. (We extend the definition to 
include negative values of r by the relation (d | n) = (d \ r2) for 
n = f 2 (mod d).) 

Let ƒ denote the fundamental discriminant related to d, that is, 

d = m2fy 

where ƒ is not divisible by a square of odd prime and is either odd, 
or congruent to 8 or congruent to 12 (mod 16). 

LEMMA 1. For d>0, we have 

(T)-G> 
PROOF. Landau, Vorlesungen Uber Zahlentheorie, vol. 1, Theorem 

101. 

LEMMA 2. We have 
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E(—)«2**"r / /= (A/ 1 ' 2 , 

where r runs over a complete residue system, mod ƒ. 

PROOF. Landau, loc. cit., Theorem 215. 

LEMMA 3. We have 

1 

4 * + 1 ssfâl4(-^> 
where A * is the least positive residue of A, mod ƒ. 

PROOF. (See Lemma 1 of the preceding paper.) We have, by 
Lemma 2, 

^szf-V-^z i(-) 
a = l n - 1 \ W / Z a=0 n — a \ W / 

1 A a f /f\ 

2 a=-0 w=-a r = l \ 7 / 

1 / / f \ A a 

Then 

y1 /2 
^ a / f \ \ 1 Z"-1 I ^ a I 

= _L y /sm^ + lW/V 
2 r==i \ sin TIT/ / / sin 7rr// 

1 Çl/sin (4* + ^WA* 
2 r==i \ sin 7rr// / 

= — E E E *2™r// 

^ r==l a=0 n——a 

= _((^*+l)/_(^* + 1 ) 2 ) j 

since 

t ï Â f - 1 if fin, 
V flvinrlf _ NT* e2irinrlf _ ^ _. J ; ' 
r=l r-1 I / — 1 if / | » . 

LEMMA 4. For aw^ discriminant d>0 and A>d1,2
y we have 
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A a / A \ 1 1 

zz(-)U4^. 
o»l n-1 \ W / I Z 
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PROOF. I t is well known that2 

Then 
( 1 ) - ( - ) ^ - w -
\ n / \ ^ / r|(m,n) 

t±(-)= tt(L) Z M(0 
A a / f \ A [air] / f \ 

= ZMW Z Z ( - ) = ZMW Z Z ( - ) 
r|ra o=l n=l, r\n \ W / r\m a=l r»=l \1rfl/ 

- I M W ( A E Z ( - Y 
r|m \ f / a=l n-1 \ W / 

Then, by Lemma 2, 

L E - ^TZ Z Z(-)l 

2 r | w | 6=1 n =l \ W / | 

1 _ A 1 1 
^ — Z ' — Z 1 ' 2 ^ —Af-ihn = — ylû!1'2, 

since we have fl,2r<fll2m<A, 

1 (VA "i \ 2 

z1' 
and 

yi/i 

X) 1 = m 

<f» .ƒ = 0 
J yi/2 ^ 

LEMMA 5. We fowe 

£ ( - ) - < - l o g <* + i. 

2 This follows from the fact that ^d\an(d) = 0 or 1 according as a > 1 or a = 1. 
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P R O O F . For n^l let 

-±±ir). 
aœl matsl \m / and let 5(0) = 5 ( - 1 ) =0. Then we have 

5(») - 2S(n - 1) + S(n - 2) = ( — ), n ^ l , 

and 
-"- (v> 

è ( — ) — = £ {•*(») - 2S(» - 1) +S(» - 2)} — 

A / 1 2 1 \ 
»=i \ n n + 1 « + 2/ 

25(») 

We divide the 

Since 

it follows that 

n = l n(n +!)(» + 2) 

series into two parts 

Si 

\ S(n) | 

^ - i 

= z, nn=l 

« a 

a = l m = l 

A - l 

1*1 £ E 

00 

5, = E-
n=A 

w(w + 1) 

~ 2 

1 

^ = 1 ^ + 2 

If A >d1/2 we have by Lemma 4 

nd1'2 <F2 

s%\ < E 
ZTA n(n+l)(n + 2) A + 1 

Hence 

I °° / d \ 1 I A~* 1 ^/2 

Z ( - ) 1 U Z - h + TTT 
I »_1 \ » / » I n_l W + 2 4 + 1 

^ 1 1 1 1 d1'2 
.i w 2 ^ .4 + 1 4 + 1 

1 1 d1'* + 1 
=g log (4 - 1) + — + 

6 2 4 A + 1 
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Taking A = [d1/2] + l we have 

è(-)1 

, n-i \ n / n 

1 1 d1'2 + 1 
< log d1'2 1 1 
- 2 d1'2 d1'2 + 1 

1 1 1 1 
= — log d H 1 < — log d + 1 

2 6 2 <*w* 2 ö 

since d ^ 5 . 
THEOREM 1. We have 

log € < <P'2((l/2) log J + 1). 

PROOF. I t is known that the number h(d) of classes of non-equiva­
lent quadratic forms with determinant d>0, is given by 

i n-i \ n / n 

d1'2 

l 0 g € , 

Since h(d)^l, we have the theorem. 

THEOREM 2 (Schur). We have 

loge g # ' 2 l o g d . 

PROOF. For d>e2, the theorem follows from Theorem 1. If d<e2, 
then d = S. Evidently € = (3 + 5x/2)/2 and 

log e < 51'2 log 5. 
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