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and 

i 

(5) Vi(x) = 2 BikWk(x). 
k=i 

Since Bikt* {£jLiB%} l,2 — h-i,k, in all the cases of the ratio function 
r(x) considered, the right-hand members of (4) and (5) are absolutely 
convergent and bounded, wherever, respectively, the v's and w's are 
bounded. Hence, if conditions are such that the right-hand member 
of (4) converges to the value of the left-hand member and if a set of 
points is known for which the v's are bounded, then the w's are 
bounded on the same set except where r(x) = 0. Similarly, bounded­
ness of the w's leads through (5) to results on the boundedness of 
the v's. 
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The Hahn-Mazurkiewicz theorem states that any Peano space 
(compact, connected, locally connected, metric space) is a continu­
ous image of the interval 0 ^ / ^ l , and conversely. Clearly, the 
mapping function is not uniquely determined. If the Peano space M 
has special topological properties, the mapping may be selected in a 
simpler fashion than might be expected generally. On the other hand, 
special properties of 'M may impose certain necessary restrictions on 
the mapping. For example, if M is a regular continuum in the sense 
of Menger, then, by a theorem due to Nöbeling,1 there is a continuous 
mapping ƒ of the circle2 onto Vtt such that each point of finite order is 
covered by the mapping a number of times which does not exceed 
the order of the point. That is, if o(x) is the order of the point x and 
m{x) is the number of points in f~x(x), then m{x) ^o(x) for each point 
for which o{x) is finite. On the other hand, if JïC is of dimension n} 

then any continuous mapping of a 1-dimensional compact set onto <M1 

Presented to the Society, September 5,1941; received by the editors October 21, 
1941. 

1 G. Nöbeling, Regulare Kurven als Bilder der Kreislinie, Fundamenta Mathe-
maticae, vol. 20 (1933), pp. 30-46. 

2 The interval may be used instead of the circle if we make ƒ (0) = / ( l ) and count 
inverses on 0 ^ t < 1. 
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in particular, of an interval or circle, is such that there is a dense set 
of points in the ^-dimensional part of M each of which has at least n 
inverse points in the original set.3 

Denote the set of local separating points of the Peano space M 
by j(\A If MQM—J^ that is, if M contains no free arcs,5 there is a 
strongly irreducible mapping of the interval 3 or circle Q onto Vît.6 

That is, for such spaces there exist continuous mappings of 3 or Q 
onto M such that no proper closed subset maps onto the whole space. 
Thus if M is an ^-dimensional sphere and ƒ is a strongly irreducible 
mapping of 3 onto M, there is a dense set of points each covered at 
least n+1 times and also a dense set of points each covered just once. 

In addition to the symbols/ , M, <£, m(x) and o(x) used above, the 
following notations will be observed. Let \j/ denote the aggregate of 
points x(£M lying in an open free arc of M — a — b. If for a (continu­
ous) mapping of 3 into a subset of M, yÇz$ implies m(y)^2, the 
mapping will be said to be of type 93Î. 

THEOREM 1. Let a and b be points of the Peano space X. There is a 
continuous mapping of the interval 0 ^ t S 1 onto X of type 9JÎ such that 
/ ( 0 ) = o , / ( l ) = 6 . 

The theorem asserts, essentially, that there is a mapping of 3 onto 
X such that every free arc is swept through at most twice. 

The following lemmas will be useful in the proof of Theorem 1. 

LEMMA 1.1. If D is a subcontinuum of the dendrite D°, to e>0 there 
is a finite collection Dl, D2, • • • , Dn of dendrites in D° such that 
D=D1CD2C - • • CDn = D° and each component of Di+1-Dl has a 
diameter less than or equal to e. 

Let p be a convex metric7 on D°. Let d = glb of numbers r such that 
3 If the original set is locally euclidean, the phrase at least n may be replaced by 

at least w + 1. See W. Hurewicz, Über dimensionserhohende stetige Abbildungeny Journal 
für die reine und angewandte Mathematik, vol. 169 (1933), pp. 71-78. 

4 The point p is called a local separating point of M provided that to every neigh­
borhood U of p there is some pair of points of the component of U containing p which 
is separated in U—p. 

6 The set A is called a free arc of M provided A is an arc and the interior of A is 
open in M. An open free arc is an open subset of M which is homeomorphic to 0 <x < 1. 
A point is said to lie in an open free arc provided there is a neighborhood of the point 
in M which is an open free arc. It is to be noted that if M is an arc, neither end point 
lies in an open free arc. 

6 O. G. Harrold, Jr., A note on strongly irreducible maps of an interval, Duke Mathe­
matical Journal, vol. 6 (1940), pp. 750-752. 

7 The metric p is called convex after Menger provided that to each pair of distinct 
points x and y in M there is a point of M—x—y such that p(x, z)-\-p{z, y)=zp{x, y). 
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D°CS(D, r). Each of the sets Dl = S[D, (i-l)e],i = l, 2, • • • , n is a 
subcontinuum of D°. The sets Dl satisfy our requirements, where n is 
the smallest integer such that (n — 1) ^ d. 

LEMMA 1.2. Let X be a Peano space. There is a sequence (Ti) of 
dendritic graphs inXsuch that (a) lim Ti—X, (b) Ti+iZ)Ti, and (c) each 
component of Ti+\—Ti has a diameter less than or equal to l / 2 m . 

That a sequence of dendrites exists in X satisfying (a) and (b) is 
well known. Application of Lemma 1.1 to the successive terms of this 
sequence gives the desired result. 

Proof of Theorem 1. The theorem is true for a connected dendritic 
graph with n end points, as a simple induction shows. Suppose, tem­
porarily, that neither a nor b lies in an open free arc. Let Ti be a 
dendritic graph in X containing a and b:8 Let fi denote a continuous 
mapping of type SD? of 3 onto T\ with /i(0) —a, / i ( l ) =b. Let (7\) be 
a sequence of dendritic graphs satisfying Lemma 1.2. Since T2 is a 
graph, T2 — Ti has but a finite number of components which may be 
denoted by Cj, C\, • • • , C^. Each C\- 7\ is a point c^ Let tfiG/r1^*)-
By a rearrangement of notation it may be supposed that 0^_X\<x2 

< • • • <xPl^l, piSni, where each Xi corresponds to a distinct C{. 
Set d\ — min \xi— Xj\ , i^j, \x{\, Xi^O, \ \— Xi\ ,Xi?^\. To e = 1/2 there 
is a d2>0 such that \x — y\ <d2 implies p[/i(x), fi(y)]<e/2 = l/22, 
where p denotes the metric ofX. Put W = S(xi+X2+ • • • +xP1, d/3), 
where d = min (di, d2). Let Ji be the component of W containing Xi. 
Let 7i, I2, • - - , Ipi+i be the intervals on 3 complementary to PF, 
where I\ becomes degenerate if #i = 0 and IVl+\ degenerate if xP1 = l. 
The interval 3 is now subdivided into the intervals (in order) 
Ii, Ji, I2, J2, - - - , ipi+i. Let / denote the piecewise linear map ob­
tained by sending Ji onto (Oxi) with order preserved, I2 onto 
(^1^2), • • • , IP1+i onto (xP1l). For xtE^Ii, put f2(x) =fi[t(x)]. On 7t-
define a map g; of the desired type so that gi{Ji) =Di. where Di is the 
enclosure of all components C\ having d as a limit point. The set Di 
is a dendrite of diameter less than or equal to 1/22. The map gi may 
be so selected that for the end points of Ji, gi =f2. 

See K. Menger, Untersuchungen über allgemeine Metrik, Mathematische Annalen, 
vol. 100 (1928), pp. 81 ff. For the existence of the metric assumed here, see C. Kura-
towski and Whyburn, Sur les elements cy'cliques et leurs applications, Fundamenta 
Mathematicae, vol. 16 (1930), pp. 305-331. 

8 T\ could be taken to be an arc but in order that the discussion to follow be gen­
eral it is assumed only to be a connected linear graph containing no simple closed 
curve. 
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The definition of/2 is now completed: if * £ ƒ*, f2(x) = gi(x). Clearly, 
/2(3) = r 2 and f2 is continuous. For x G ^ / { , \x— t(x)\ <d, hence 
p[fi(x), / 2 ( * ) ] < l / 2 2 . If xÇJi, p[fi(x), / i ( ^ ) ] < l / 2 2 , and since the 
diameter of Z \ is less than or equal to 1/22, p[f2(x), f2(t~1(xi))] < l / 2 2 . 
But f2(t~l(xi)) =/i(x t) , hence by the triangle inequality p[/i(x), f2{x)] 
< l / 2 . Thus if a denotes the usual metric of the function space 
<r(fi,/i)£l/2.» 

To show t h a t / 2 is of type 2)? consider a point yÇ^\f/- T2. It is to be 
shown that fTl{y) contains at most two points, that is, m{y1 f2) ^ 2 . 
If y G T2 — 7\, y lies in an unique 
frx(y) — ̂ "Vr1^)» Since / i has the desired property and / i s 1-1 on the 
set composed of the interiors of the intervals I{, m{y1 jf2)^2. Con­
sider the remaining case y — C{. Here m(yt ƒi) = 1, for suppose, on the 
contrary, frl(y)D31+32. Since yÇîu, y^a, &, hence q\ and g2 divide 3 
into three subintervals A, B and C. But each of these subintervals has 
as an image under/ i a nondegenerate continuum containing y. Hence 
points of Ti near y have three inverses on 3, which denies the prop­
erty of / i . Since yÇz.\[/, only one component C\'=Di of T%—Ti can 
have y as a limit point. The mapping gi has the desired property, 
thus frl(y) ==grl(y)-\-fr1[^~1(y)] is precisely a pair of points. Hence 
for y Ed- T2, rn(y, f2) ^ 2 , and / 2 is of type 5DÎ. 

The general inductive hypothesis is now clear. 
To the dendrite Tn there is a continuous mapping/ n , /n(3) = Tn, of 

type m and such tha t / n (0) =a , / n ( l ) =6 . Further, <x(f^h ƒ*•) ^ 1/2*-1, 
i = 2, 3, • • • , n. The construction of fn+\ from fn is accomplished pre­
cisely as above. 

There is thus determined a sequence of points (/n) of the space 
such that to e > 0 there is an index N such that for i, j > N, <r{fu fj) < e. 
The space X 3 being complete, let lim fn =ƒ. Clearly, /(3) =X. To com­
plete the proof of Theorem 1 it will suffice to show that y&Tp implies 
f~l(y) has at most two components. For, if we grant this, the fac­
torization ƒ = k[h(x)], where h is the monotone transformation ob­
tained by shrinking the components of f~l(y) into points and k is the 
corresponding light transformation, yields &(3) =X, m{yÇ$, k)^2y 

hence k is of type 9JÎ.10 

Suppose, on the contrary, y (Et and Xi, X2 and X3 are three compo­
nents of /~1(y). Since yÇz.yp, y^a, b, hence 3— ̂ Xi has precisely 4 
components Riy i = l, 2, 3 and 4. Suppose Wi and /* are the left and 
right end points of Xi, respectively. (If Xi is a point, Wi = ti.) Let the 

» If/, gGX3, *(ƒ, g) -lub />[ƒ(*), g(*)]f xG 3. 
10 This is an application of a factor theorem for continuous transformations due 

to Eilenberg and Whyburn. 
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notation be arranged so that Wi — Ri- Xi, i = 1, 2 and 3. The points Wi 
and wj, i^j, are, of course, distinct. Let Ai, i — 1, 2 and 3 be a sub-
interval of Ri containing w% such that f (Ai) C U, where U is any fixed 
open free arc of X containing y. Let J5»-+i 2 = 1,2 and 3 be a proper sub-
interval of Ri+\—Ai+\ containing t% such that/(J3»)C U, where At = 0 
by definition. Since Xi is a component of f"~1(y)i the sets of f'(Ai), f(Bi) 
are nondegenerate subarcs of U with at least the point y common. 
Some point yQ of U—y must be covered by at least three of these six 
sets. Denote three of the corresponding sets Ai (Bi), i = l, 2 and 3 
by C\, Ci and C%. One end point of C», say a», maps into 3/. As C» is 
traversed from at- let bi be the first point in /_1(:y0)- Let G denote any 
subarc of U—y—y° which lies between y and y°. Set d = p(G, y+y°) 
> 0 . Then for n large enough <r(/n, ƒ) <d/S. B u t / n (&*&*) is a connected 
subset of Z7 which contains a point from each component of U—G, 
hence f n(aibi)^) G. This denies that fn is of type $)?. The proof of Theo­
rem 1 under the special restriction that neither a nor b lies in a free 
arc has been completed. 

To remove the restriction suppose first that only a lies in a free 
arc of X. Imagine that X is situated in the Hubert cube and let zA be 
an arc which is joined onto X at a and has no other point inX. Let 
a1 be the other end point of zA. Construct a mapping as above with 
/(O) =al, f(\) = b, jf(3) =X+aA. Since neither a1 nor b lies in an open 
free arc of X-\-oA, such a mapping will exist. Let xl be the least x for 
which f(x) ==a. Then the mapping ƒ on the interval x1 St S 1 satisfies 
our requirements. A similar modification suffices to treat the case in 
which b is an open free arc and also the case in which both a and b 
have this property. 

S e t ^ = X - i Â . T h e s e t ^ i s o p e n . Put^=\l/+(W- H), where H is the 
set of nonlocal separating points of X. We come now to the principal 
result. 

THEOREM 2. Let a and b be points of the metric space X. In order that 
X be a Peano space it is necessary and sufficient that for any countable 
subset 4P of Q—a — b there be a continuous mapping ƒ of 0 ^ t^ 1 onto X 
such that f (0) =a,f(l)=b and ;y£<P implies m(y)^2. 

PROOF. The sufficiency is clear. If \j/ = 0, the result is known, in fact, 
in this case a mapping of the described type exists such that for y G *P, 
m(y) = l.6 I t is supposed, then, that x/z^O. By application of Theorem 
1, there is a mapping of type 2ft of 3 onto X with ƒ (0) =a,f(l) =b. The 
desired map will be obtained by a modification of ƒ. 

To facilitate the discussion it will be supposed t h a t X has an S-met-
ric, that is, a metric p such that for each r > 0 and xÇX, S(x, r) is a lo-
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cally connected continuum.11 Let A =ai+a2+ • • • =<P-W = <P-W-Ji. 
Set di = p(ai,X—W). Choose a number e\ such that di/2 <ei<di and 
A- {S(ai, ei)—S(ai, ei)} = 0. This is possible since A is countable. 
Let dk2 be the first point of A in W— "Si, where Si = S(ai, e\). Let 
d2 = p[dk2, (X—W)+Si]. The number e2 is chosen so that d2l2<e2<d2 

and A • {S(a&2, e2) — S(dk2, e2) } = 0 . Continuing in this, way a sequence 
of spheres (Si) is determined such that (a) Si is a Peano space, 
(b) 3<-3i = 0,*Vi, (c) «(SO-+0, (d ) ]£&=!g?and (e) 4 • (Si-Si) = 0. 

Set F»=/""1(5*). Let Vij,i = l , 2, • • • be the components of V». Let 
Fa be a component of F»- such that F Ü * / - 1 ^ ) ^ ^ Every point of S* 
is either a nonlocal separating point of £»• or a limit point of such 
points. This is clear if # £ 5 ; , for SiCW. If xÇzSi — Si, x is a limit 
point of points of Si and hence a limit point of nonlocal separating 
points of Si. Thus, having shown that Si is a Peano space with no free 
arcs, there is a strongly irreducible mapping, fn( Vn) = Si, such that 
f=fa on Vn— Vn and yG'P-S» implies füx(y) is a single point. 

On Vij, j>\, two cases are distinguished according as ƒ maps the 
end points of Vij into the same point or not. If ƒ carries the end points 
of Vij into x, define /»y=ff on Vij. I f /carr ies the end points of F»; into 
distinct points x and y, proceed as follows. The set Si— A is a con­
nected and locally connected G& set12 in a complete space, hence there 
is an arc RijQSi — A which joins x and y.lz On Vij define fij to be a 
homeomorphism into Rij such that fij agrees with ƒ on Vij— Vij. 

The new mapping g will now be defined. On 3 — ^ Vij, set g(x) =f(x). 
On Vij, set g(x) =fij(x). Since ƒ agrees with g on the end points of 
Vij and each fij is continuous, g is continuous (we use here the con­
dition (c) on the spheres (Si)). Clearly, g(3) =X. If ^ G ^ - ^ , m(y, f) 
= m(y, g)S2, by virtue of the fact that ƒ is of type 9ÏÏ. If yÇiV-W, 
y lies in an unique Si and g~l(y) ==/«1(3')» hence ra(;y, g) = 1. 

NORTHWESTERN UNIVERSITY 

11 J. L. Kelley, A metric connected with property S, American Journal of Mathe­
matics, vol. 61 (1939), pp. 764-768. 

12 The complement of a countable set of nonlocal separating points in a Peano 
space is connected and locally connected, see G. T. Whyburn, Semi-closed sets and col­
lections, Duke Mathematical Journal, vol. 2 (1936), pp. 685-690. 

13 This is the well known Moore-Menger generalization of the arcwise connectivity 
theorem for regions in a Peano space. 


