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1. Introduction. The main purpose of this address is to bring to 
the attention of the workers in the theory of elasticity and related 
branches of applied mathematics a simple general method of solution 
of several important classes of two-dimensional boundary value prob­
lems. I use the term "two-dimensional" or "plane" boundary value 
problems in the sense that their mathematical formulation requires 
the introduction of only two independent variables. In this sense the 
problems of St. Venant on torsion and flexure of cylinders, and the 
problems on deflection and buckling of elastic plates, which have a 
three-dimensional physical aspect, are two-dimensional. 

The method which I intend to discuss was developed mainly by a 
group of Russian mathematicians, and despite the fact that it has 
been utilized extensively in Russia for more than a decade, it is 
virtually unknown in this country. A great variety of problems to 
which it has been applied to obtain useful solutions includes an 
investigation of flexure and torsion of beams, a study of thermo-elastic 
stresses in composite cylinders, an analysis of deflection of anisotropic 
plates, and a multitude of problems characterized by the states of 
plane stress and plane strain. 

Inasmuch as familiarity with the concepts of applied mathematics 
is a rare virtue, I shall reduce the use of the technical language to a 
minimum, and shall ask you to take for granted certain basic equa­
tions of the theory of elasticity. Failure to comprehend the origin of 
these equations will not impair the understanding of the general 
method of their solution. 

We shall suppose that a two-dimensional region R, occupied by an 
elastic medium, is referred to a system of cartesian axes (x, y). To fix 
the ideas we can think of the region R as representing the cross-sec­
tion of a long cylinder whose elements are parallel to the 2-axis, and 
whose lateral surface is subjected to a distribution of external forces 
that is independent of the ^-coordinate. Under the action of such 
forces, the medium, in general, will be distorted, and the displace­
ment of the points of the region R in the directions of the x- and y-
axes will be denoted by u(x, y) and v(x, y), respectively. If the medium 
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is assumed to be isotropic, then the stresses produced in the medium 
are connected with the derivatives of u and v by the formulas (Hooke's 
law) 

(1.1) r x x = XA + 2/x — ; Tyy = XA + 2fi — > rxy = M ( h — ), 
d^ du /dv bu\ 

> Tyy = \A + 2/J, > TXy = fl ( ~\ ) , 
bx by \bx by/ 

where the r 's are the components of the stress tensor, X and JU are 
elastic constants introduced by Lamé, and A^bu/bx-\-dv/by. 

If the medium is in equilibrium (in the absence of body forces) 
then the components of the stress tensor r satisfy throughout the 
interior of the region the differential equations 

OT xx brxy ^ brxy bryy ^ 
v-*- • £) ' "i u, I — o, 

bx by bx by 

while on the boundary C of the region R they fulfill the conditions 

TXX cos (%, v) + Txy cos (y, v) = X(s) 
(1.3) 

Txy cos (x, v) + Tyy cos (y, v) — Y(s), 

where v denotes the exterior normal to the contour C, and X and 
Y are the x- and ^-components of the prescribed external force 
estimated per unit length 5 of the contour C. 

I shall call the problem of determining the solution of the system 
of equations (1.1), (1.2), (1.3), for the five unknown functions rXXl 
rxy, Tyy, u, v, the first boundary value problem of the plane theory of 
elasticity. Instead of specifying the distribution of external force on 
the boundary C of the region R, we can impose the requirement that 
the displacements u and v assume prescribed values on the contour 
C. This latter problem will be referred to as the second boundary 
value problem. 

The great majority of the two-dimensional boundary value prob­
lems in the theory of elasticity is reducible to the solution of these 
boundary value problems. We shall be concerned only with those 
solutions in which the components of the stress tensor are continu­
ous and single-valued throughout the region R together with their 
first and second partial derivatives with respect to x and y. The dis­
placements u an v will be assumed to be continuous and single-
valued in the region R together with their partial derivatives including 
those of the third order. These restrictions arise essentially from 
physical considerations, and it is a consequence of the restrictions 
imposed on the displacements u and v that the components of the 
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stress tensor determined from equations (1.2) satisfy in the region R 
the Beltrami-Michell equation of compatibility, namely 

(1.4) VKTXX + Tyy) = 0, 

where V2=d2/dx2+d2/dy2. 
It is clear that equations (1.2) represent a necessary and sufficient 

condition for the existence of a function U(x, y), such that 

d2U d2U d2U 
( 1 . 5 ) Txx = > Tyy = — — - , Txy = — J 

dyz dxz oxoy 
and it follows at once from (1.4) that U(x, y) satisfies the biharmonic 
equation 

(1.6) VV*7 = 0 

throughout the region R. The function U is commonly known as 
Airy's stress function. 

Substituting the relations (1.5) in the boundary conditions (1.3) 
and combining results lead to a compact boundary condition in the 
form 

d /dU dU\ 
(1.7) —( i ) = X + iY, onC, 

ds \dy dx / 
where d/ds represents differentiation along the arc length of the con­
tour C and i2= — 1. Inasmuch as the right-hand member of (1.7) is a 
known function of the points of the contour C, it is clear that the 
solution of the first boundary value problem is reduced to the de­
termination of the biharmonic function U(x, y) whose derivatives, 
dU/dx and dU/dy, are specified functions of the points of C. This 
latter problem was subject to a prize offered by the Paris Academy, 
and its complete theoretical solution for the case of a finite simply-
connected region R, bounded by a contour C satisfying certain gen­
eral conditions, was obtained by J. Hadamard and G. Lauricella.1 

They solved the problem by reducing it to the solution of a Fred-
holm's integral equation. 

A significant step in the direction.of the development of the theory 
was made by G. V. Kolossoff, whose Dorpat dissertation2 (1909) was 
concerned with the application of the theory of functions of a com­
plex variable to the solution of plane problems of the theory of 
elasticity. Further important results were obtained by N. I. Mus-

1 Among the recipients of the prize were A. Korn, J. Hadamard, and G. Lauricella. 
See references [ l ] , [2], and [3] at the end of this paper. 

2 See [4-8]. 
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chelisvili, who made use of conformai mapping and of integrals 
analogous to those of Cauchy to obtain an elegant solution of the 
first and second boundary value problems for an arbitrary simply-
connected domain (finite or infinite). 

In a series of papers dating from 1919, Muschelisvili gave a de­
tailed analysis of the character of solution in simply- and multiply-
connected domains and illustrated his method of solution by provid­
ing practically useful solutions of a number of specific problems 
[9-21]. 

The questions pertaining to the existence of solution in multiply-
connected domains were dealt with extensively by S. G. Michlin, 
who gave, in the period from 1933 to 1935, several methods of theo­
retical solution of the first and second boundary value problems 
[22-26]. 

In the following section I shall limit myself to a discussion of 
Muschelisvili's method of solution of the boundary value problems 
of plane elasticity for simply-connected domains. While the applica­
tion of this method to multiply-connected domains is important from 
a technical point of view (see §3) the essence of the method is ade­
quately illustrated by a consideration of the simpler case. 

2. Reduction of the problem to a functional equation. It is clear 
from equation (1.6) that the function V2U = P(x, y) is harmonic in R. 
Let Q(x, y) denote the conjugate harmonic function, and introduce 
an analytic function (j>(z) of a complex variable z = x+iy defined by 
the formula 

P + iQ = 44>'(z), 

where prime denotes the derivative with respect to z. If the real and 
imaginary parts of the function <f>(z) are denoted by p and q, respec­
tively, then it is easily verified that 

V2(U - px - qy) = 0. 

Accordingly, the function 

pi = U — px — qy 

can be considered as the real part of some analytic function xC3), and 
since 

2(px + qy) =z cj>(z) + z $(z), 

one can write the biharmonic function V in the form3 

3 The possibility of representing a biharmonic function with the aid of two an­
alytic functions of a complex variable was noted first by Ê. Goursat, Bulletin de la 
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(2.1) W = z <t>{z) +zcl>(z) + x(z) + x(»), 

where bars denote the conjugate complex values. 
Inserting the value of Ugiven by (2.1) in the left-hand member of 

equation (1.7) yields the boundary condition in the form 

(2.2) (X + iY)ds = - id[<t>{z) + z ¥(z) +W)\ 

where \f/(z) =x'6s)« 
If both members of equation (2.2) are integrated along the contour 

C from some arbitrary point s=So, there results 

f (X + iY)ds = - i[<t>(z) + z WTz) +W)] + const., 

so that the boundary condition can be written as 

(2.3) <j>(z) + z Viz) + W) = Ms) + *ƒ.(*), on C, 

where 

i f \ x + iY)ds = Ms) + iMs). 
J S0 

The constant of integration has been omitted in the formula (2.3) 
since it can be fixed in an arbitrary manner without affecting the 
state of stress.4 

A reference to the formulas (1.5) and (2.1) shows that the com­
ponents of the stress tensor r are easily calculable once the functions 
<j>(z) and \f/(z) are known, and it is readily checked by integrating 
equations (1.1) that 

/dU dU\ 2(X + 2M) 
(2.4) 2n(u+iv) = -I + i ) + - ^ — *(*). 

\dx by / X + \x 
Thus the complete solution of the first boundary value problem is 
made to depend on the solution of the functional equation (2.3). 

The formulation of the second boundary value problem in the form 
of a functional equation likewise presents no difficulty. In fact, the 

Société Mathématique de France, vol. 26 (1898), p. 236. The derivation of Goursat's 
formula given above is due to N. I. Muschelisvili, Bulletin de l'Académie des Sciences 
de 1' URSS, 1919, pp. 663-686. The analytic character of solutions of a biharmonic 
equation follows from this derivation, while the derivation of Goursat depends on 
the assumption that every biharmonic function is analytic. 

4 This statement follows from the fact that the state of stress, in a simply-con­
nected domain, is not altered when the function <f>(z) is replaced by <}>(z) -\-ciz-\-a-{-ip 
and \p(z) by ij/(z)-\-a'-\-i(3', where c, a, /3, a', and (3' are arbitrary real constants. See, 
for example, reference [15] listed at the end of this paper. 
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desired functional equation, in this case, follows almost at once from 
equation (2.4). 

The limitations of time do not permit me to enter upon the dis­
cussion of the interesting questions connected with the existence and 
uniqueness of solution of the problem, and I shall confine myself to 
a remark that the proofs of uniqueness and existence of solution 
present no serious difficulties if one assumes the functions 0(JS), 0;(V), 
and \j/(z) to be continuous in the closed region R, the prescribed func­
tions X(s) and Y{s) to satisfy Holder's condition, and the contour C 
to have a continuously turning tanget.5 It may be remarked that 
these restrictions are dictated by the behavior of stresses and dis­
placement occurring normally in physical problems, and that they 
can be considerably relaxed by an analytically inclined mathe­
matician. 

I shall indicate in the remainder of this section some modes of 
attack on the problems that lead to the determination of the func­
tions <j>(z) and \p(z) in practically useful forms. 

The solution of the functional equation (2.3) is almost immediate 
when the region R is that bounded by a unit circle \z\ ^ 1. Since the 
functions cj>(z) and \p(z) are analytic in R, one can write 

00 00 

(2.5) *(«) = E anz", f(z) = £ M" , I « I < 1-

The functions X and F, characterizing the prescribed distribution 
of stress on the boundary of the unit circle, can be regarded as func­
tions of the polar angle 0 defined by the relation z = eie. Then the 
right-hand member of (2.3) can be expressed in the form 

h + if2 = i f (X + iY)ds = £ cne*«; 
J S0 —00 

if one assumes that the functions f\ and ƒ2 are of bounded variation. 
The Fourier coefficients cn being known, one can insert the foregoing 
expansion in the right-hand member of (2.3) and the series (2.5) in 
the left-hand member. A comparison of like powers of eie on both 
sides of the resulting equation will yield expressions for the unknown 
coefficients an and bn in terms of the known values cn. The justifica­
tion of the validity of the formal solution obtained in this manner 
presents no difficulty in most problems of practical interest, since the 
behavior of functions describing the specified distribution of stress 
on the boundary cannot be too pathological. 

6 See, for example, [26]. 
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If the contour C bounding the region R is not a circle, one can in­
troduce a function 

z = cotf) 

that maps the region R conformally on the unit circle | f | < 1. Let the 
transforms of the functions<j>{z) and \f/(z) be denoted, respectively, by 
0i and i/'i, so that 0i(f) =0[co(f)] and ^i(f) =^[w(f)] . Then a simple 
calculation shows that the functional equation (2.3) goes over into 

(2.6) *!(*) + 4 = *77*) + ^W = /i + *ƒ* 
co(o-) 

where a = eid represents a point on the boundary y of the circle 
| f | = 1 , and ƒ 1+^2 is the transform of the right-hand member of (2.3) 
and hence can be regarded as a known function of 6. 

The method of solution in series indicated above can be applied to 
determine the analytic functions 

00 00 

*i(r) = E <UM. iMr) = E w . i r I < i, 
w=0 n=0 

and it is not difficult to verify that the coefficients an and bn can be 
determined explicitly in terms of the Fourier coefficients of the func­
tions fi+if2 and <o(oO/û/(<r), whenever the mapping function co(f) is a 
polynomial.6 

If it is recalled that the mapping function for a suitably restricted 
simply-connected region can be approximated by a polynomial 
2 = (on(f) of sufficiently high degree (in the sense that the polynomial 
s = wn(f) maps the region |f| < 1 on some region Rn which can be 
made to approximate the region R as closely as desired) then the 
practical usefulness of the method of solution outlined above becomes 
immediately obvious. 

In a number of important problems the determination of the func­
tions 0i(f) and \^i(f) can be greatly simplified by transforming the 
functional equation (2.6) into an equivalent pair of integral equations. 
Thus, consider the equation (2.6) and the equation 

(2. 7) *i(cr) + — — <t>{ (a) + ^(<r) = ƒx - if, 
co(o-) 

which is obtained from (2.6) by forming the conjugate expressions. If 
6 For further particulars see [13, pp. 287-296]. A detailed exposition and some 

specific calculations pertaining to several problems of physical interest are contained 
in [30, pp. 266-311]. 
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both members of these equations are multiplied by (l/2iri)da/(a — f) 
and the resulting expressions integrated over the contour y of the 
unit circle, one obtains 

(2.8) 

2iri J y 

liriJ y 

<t>i(a) da 

' - f 

do 

• + 

+ 

^ + 

+ 

2iri J y 

ZWl J y 

2iri J y 

- f 

CO(<T) 

co (a) 

J{<r) 

* i ( * ) 

cr -

(/a-

<r -

dcr 

— dcr 

- r 

= A(£), 

{C) d da 

- r 

= u(r), 
where 

^ ( f ) ~ / T [ ( A + * / » ) / ( < r - f ) ] A r , 5 ( D = ~ ƒ , [ (ƒ , -» / . ) / ( ( r -n ]d<r . 

The complete equivalence of the simultaneous equations (2.8) with 
(2.6) follows at once from the theorem of Harnack. The equations 
(2.8) can be simplified by applying Cauchy's integral formula, and 
by observing that 

Ziri J y a — Ç 

where ƒ (f ) is any function continuous in the closed region I r e l a n d 
analytic in the interior of the unit circle y. Making use of these 
simplifications leads to a pair of integral equations 

1 C wW 4>iM 
*i(rt + — =44= — ^ d° + *i(o) = ^(r), 

TTlJ y 0) ( 
2iriJ y co'(a) a 

(2.9) 
l r « M 0i M 

î(f) + — -44- — - d° + *i(°) = B®-
2wl J y CO (cr) (T — f 

It was demonstrated by Muschelisvili that the solution of these 
equations for the unknown functions c/>i(D and r/'iQ") can be obtained 
in an elementary way in terms of the integrals of Cauchy's type when­
ever the mapping function co(f) is rational.7 

7 See, for example, [15, 16]. 
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The system of integral equations (2.9) is not of the standard type, 
but it is possible to reduce the first of equations (2.9) to an ordinary 
integral equation of Fredholm, of the second kind.8 Once the function 
</>i(f) is determined from this equation, the second of equations (2.9) 
permits one to calculate the function ^i(f) by quadratures. Some 
effective methods of numerical solution of such equations were given 
recently by E. I. Nyström, D. I. Serman, A. Gorgidze, A. Rukhadze 
ana others [27-29]. 

3. Thermal stresses. One of the technically important problems is 
that of determining the state of stress produced in an elastic body 
by heating. Consider a body in the shape of a right cylinder whose 
length is large compared with the linear dimensions of the cross-sec­
tion, and let the x^-plane of the cartesian coordinate system lie in 
one of the cross-sections of the cylinder. If such a body is subjected to 
a change in temperature which is a function of the x- and ^-coor­
dinates alone, then the change of temperature will cause the body to 
expand. In general, the expansion of an elastic body cannot proceed 
freely and the body becomes stressed. The problem of determining 
the distribution of thermal stresses assumes particular importance in 
a study of compound columns. A concrete beam reenforced by steel 
and subjected to varying temperatures is a specific example. 

I t is not difficult to see that the determination of stresses in this 
case essentially reduces to the solution of a system of equations 
which differ from the system (1.1), (1.2), (1.3) only in that Hooke's 
law (1.1) is replaced by a more general one that takes into account the 
effect of thermal expansion on stresses. This generalized law has the 
form 

du 
TXX = XA + 2/x (3X + 2fx)aT(x, y), 

dx 
dv 

Tyy = XA + 2/x (3X + 2fx)aT(xy y), 
dy 

/dv du\ 

\dx dy/ 

8 This reduction is accomplished essentially by differentiating both members of 
the equation with respect to f and by allowing f to approach <r0, where <r0 is an 
arbitrary point of the contour y. The resulting equation has the form </>'(<ro) + (l/27r£) 
fyK(<To, (r)<//(<r)do- = .F(<ro), where F(CTQ) is a known function and the kernel K(aot a) 
is a continuous function provided that suitable restrictions are imposed on the map­
ping function o>(f). See, for example, [13, 16]. 
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where a is the coefficient of the linear thermal expansion and T(x, y) 
is the known change in temperature of the body. 

If we introduce a stress function U(x, y) denned by the formulas 
(1.5) and perform calculations analogous to those that led to the bi-
harmonic equation (1.6), there will result the equation9 

(3.1) V2V2U + kV2T = 0, 

where k = 2fi(SX+2fjL)(K + 2iJL)-1a. 
Setting U=$— V, where F is a suitable solution of the Poisson 

equation 

V2V = kT, 

shows that equation (3.1) is equivalent to a system of two equations 

V V * = 0, V2F = kT. 

A calculation in every respect parallel to the one that led to the 
boundary condition (1.7) in this case yields 

d /d$ d$\ d /dV dV\ 
(3.2) — ( i J = X + iY + —( i J, onC, 

ds\dy dx / ds\dy dx / 
and it follows that the thermo-elastic problem is identical with the 
first boundary value problem discussed in §§1 and 2. 

An assertion of the mathematical equivalence of the two problems 
does not settle many specific questions regarding the behavior of 
cylinders when subjected to heat. The implications of the connection 
of the derivatives of the function <£ with those of the function V as 
expressed in formula (3.2) were analyzed by B. E. Gatewood in a 
doctoral dissertation.10 Gatewood also studied the thermo-elastic 
problem for cylinders with longitudinal cavities and obtained some 
interesting results for cylinders composed of different materials. 
These results, however, are too specialized to be entered upon in this 
address. 

It is obvious that a similar mode of attack can be expected to suc­
ceed in a study of thermal stresses in elastic plates made up of 
several layers of different materials.11 

9 Of course, the equation of compatibility, in this case, assumes a form different 
from (1.4). 

10 Thermal stresses in long cylindrical bodies, dissertation, Wisconsin, 1939, 96 pp. 
See, also, B. E. Gatewood, this Bulletin, abstract 45-9-314. A paper based on this 
dissertation appears in Philosophical Magazine, (7), vol. 32 (1941), pp. 282-301. 

11 Some references to recent work on thermal stresses are given at the end of this 
paper. See [31-42]. 
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4. Deflection of non-isotropic plates. The industrial demands for 
lighter and stronger materials have given a new impetus to a study 
of the behavior of various structural members made of non-isotropic 
materials. In particular, the need of an accurate knowledge of the 
performance of plates and shells made of plywood is strongly felt, 
and in this connection some extensions of the method outlined in 
§2 offer new possibilities. I shall indicate only one such extension 
which yields fruitful results in a study of small deflections of a thin 
non-isotropic plate subjected to a load q(x, y) distributed normally 
over one of the faces of the plate. A very general type of anisotropy 
is assumed, and it will be supposed that the x^-plane of the co­
ordinate system is the only plane of elastic symmetry. 

It can be shown,12 by utilizing the usual assumptions of the thin 
plate theory, that the differential equation governing small deflection 
w has the form: 

bu + 36i« — — + 2(6i2 + bM) 

(4.1) 
dxA dxzdy dx2dy2 

d*w dAw 3q(x, y) 
+ SÖ2Q + 622 — = —— 

dxdy* dy* 2/r 
where the bij are the elastic constants and 2h is the thickness of the 
plate. 

The equation (4.1) can be written in a symbolic form, with the aid 
of four linear operators, as 

3q 
DJ)zDjyxw = j 

2¥ 

where Di = d/dy—fJLid/dx1 and the constants M* are the roots of the 
characteristic equation 

(4.2) 622M
4 + 3Ô26M3 + 2(b12 + 666)M2 + 3 W + i n = 0. 

It follows from the fact that the potential energy of any physically 
realizable state of stress is positive that the roots ju; of the char­
acteristic equation (4.2) are complex, and since the coefficients bij 
are real, they must have the forms:13 

Ml = OL + Pt, JJL2 = 7 + 8i, M3 = Ml, M4 = M2, 

where a, j8, 7, ô are real and JST^O, ÔF^O. 

12 See [43, 44]. 
13 A proof of this was given by S. N. Lechnitzky [43]. 
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Accordingly, the general solution of equation (4.1), for the case of 
distinct roots,14 can be written as 

4 

(4.3) w = J^Fk(x + iihy) + w0(x, y), 

where w0(x, y) is any particular solution of (4.1), and the Fk are 
arbitrary functions. Since the deflection w(x, y) is real, it follows 
that the functions Fk(x+jnky) must be conjugate in pairs, so that one 
can write the solution (4.3) in the form: 

(4.4) w = 0(si) + $(Zi) + 4>(zi) + \p(z2) + w0(x, y), 

where <j>{z\) and \f/(z2) are arbitrary functions of the complex variables 

(4.5) zi = x + juiy, z2 = x + /la^-

Let the region corresponding to the middle surface of the unstrained 
plate be denoted by R and introduce two new systems of cartesian 
coordinates (xi, y{) and (x2, y2) related to the coordinates (x, y) by 
the formulas 

(4.6) zi = xi+ iyi, z2 = x2 + iy%. 

I t follows from inspection of (4.5) and (4.6) that the three systems 
of coordinates (x, y), (xi, yi), and (x2l y2) are connected with one 
another by the equations 

Xi = x + ay, yi = fiy, 

x2 = x + yy, y2 = ôy. 

Hence to any point P in the region R there correspond points P i and 
P2 in some regions Ri and R2 of the Z\- and s2-planes, respectively, 
and it is obvious that the regions R\ and R2 are obtainable from the 
region R by a homogeneous deformation of the :ry-plane. Thus, when 
the complex variable z = x+iy varies in the region R, the variables Z\ 
and z2 vary in the corresponding regions R\ and R2. Consequently, 
the functions <j>{z\) and \f/(z2) entering in the general solution (4.4) 
can be regarded as functions of the ordinary complex variables Z\ and 
z2 defined in two different planes. 

Ordinarily one is interested in determining the deflection w when 

14 In case of equal roots (MI==M2, ^~m) the general solution assumes the form 
w = (x-\r»3y) Fi(x+my) + (x+/jny) F2(x+»3y)-{-F3(x+iJilly) + F4(x+tJL3y)-{-wo(x, y) 
and a similar discussion can be carried out for this special case. If the plate is isotropic 
the equation (4.1) assumes the form V2V2w — q/D, where D is the flexural rigidity, and 
the general solution can be written as w = 0(0)+2^(2)+#(«)+2^(2)+«*<,(#, y). 
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the edges of the plate are subjected to a prescribed distribution of 
moments and shearing forces. Inasmuch as the moments and shear­
ing forces are easily expressible in terms of the derivatives of the 
deflection function w(x, y), one is led to a set of functional equations 
(appropriate to various modes of fixing plates at the edges) for the 
determination of the functions (j>(zi) and ^(22). In general, the func­
tional equations are of the type 

(4.7) ai&'izi) + a*fifr'(z2) + <hïtf(zù + W ' f e ) = A fa), j = 1, 2, 

where the a^ are known constants and A fa) are known functions 
prescribed on the contour C bounding the region R. 

The problem of determining the functions <j>{z\) and ^(22) in this 
case is naturally more involved than in the corresponding isotropic 
problem, but the complications are not of a basic sort. One practical 
mode of solving a system of equations (4.7) is to introduce a pair of 
suitable mapping functions 2i = coi(f) and 22 = co2(D transforming the 
regions Ri and R2 into the unit circle | ? | ^ 1 in the auxiliary f-plane, 
and thereafter proceed in the same manner as indicated in §2. 

Some interesting results pertaining to the problem of deflection of 
a clamped non-isotropic plate, subjected to a quite general distribu­
tion of normal load, were obtained recently by V. Morkovin in a 
partially completed doctoral dissertation. By utilizing the method 
outlined above, Morkovin obtained in closed form the solution of 
the problem of deflection of a clamped elliptical plate when the load­
ing function q(x, y) is a polynomial in x and y. The important case of 
a clamped circular plate follows directly from it by specializing the 
values of the parameters appearing in the solution. 

5. Concluding remarks. The foregoing account of a somewhat 
novel use of the theory of functions of a complex variable was con­
cerned mainly with the applications to two-dimensional problems of 
elasticity. However, the central idea of replacing the differential equa­
tion and boundary conditions by an equivalent functional equation 
is obviously capable of extension to problems in other branches of 
applied mathematics. 

A consideration of the problems of equilibrium of cylindrical bodies, 
and especially those relating to a study of initially curved and twisted 
beams, shows that occasionally there are advantages in utilizing 
similar notions in some classes of three-dimensional problems [48-
56]. 

The importance of the theory of functions of a complex variable 
in connection with the solution of the boundary value problems in-
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volving Laplace's equation is, of course, recognized by every applied 
mathematician. However, even in the consideration of such problems 
as those of Neumann and Dirichlet, the engineers appear to be so 
absorbed in special devices and artifices that a simple formulation of 
such problems is often overlooked. 

In order to set in relief the basic notions that underlie the foregoing 
formulation of the two-dimensional problems of elasticity, it may not 
be out of place to recall a simple approach to the problem of Dirich­
let. 

Let the function U(x, y), continuous in the closed simply-connected 
region R and harmonic in the interior of R, assume continuous values 
f(s) on the boundary C of R. Then the boundary condition can be 
written in the form 

0(s) + W)~= 2f(s) on C, 

where Re0(^) = U(x, y).. Now, if the region R is mapped conformally 
on the unit circle |f| ^ 1 with the aid of the function s = co(f)f then 
the foregoing boundary condition assumes the form 

* i (<O+0^7j = 2/i(0), 

where a = ei9, and </>i(f) and fi(6) are the transforms of <f>(z) and f(s). 
Multiplying by (l/2iri)d<r/(cr — Ç) and integrating over the contour 
7, yields 

i r * iW ^ , i r *&) j i f Me) 
. i ùa H ; I d<r = —; I da, 

2iri J y a — f 2iri J 7 a — f xi •/ 7 <r — f 
and the evaluation of integrals gives at once 

1 C hifi) 
<£i(f) = — I da + const., 

irlJ y (J — f 

which is merely the formula of Schwarz. 
The remarkable simplicity of the formulation of the two-dimen­

sional problems of elasticity with the aid of functional equations is 
likely to produce an impression that the task of obtaining practically 
useful solutions is a straightforward matter. While it is true that in 
some cases the solution of rather difficult problems is obtained with 
remarkable ease and rapidity, in many instances severe calculational 
difficulties are present. These difficulties are connected mainly with 
the determination of the mapping function. However, recent ad­
vances in the development of practical methods of constructing map-
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ping functions for simply- and multiply-connected domains justify 
some degree of optimism. 
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