
THE ANALYSIS OF LINEAR TRANSFORMATIONS 

F. J. MURRAY 

1. Introduction. If T is a closed additive transformation with do­
main dense (abbreviated c.a.d.d.) between Hubert spaces, there 
exist two resolutions of the identity, £i(X) and E2(X) such that 
E2(\)TC.TEi(K). These resolutions are defined for 0 ^ X < oo, and if 
0<ce</3 T is an isomorphism, when contracted to the range1 of 
Ei((3)—Ei(a). This is important in applications, since only under an 
isomorphism is the convergence of a sequence of elements equivalent 
to the convergence of the images. This property compensates for the 
lack of compactness of Hilbert space. 

These resolutions also permit us to express T as a denumerable 
sum of such isomorphisms.2 Each isomorphism in turn can be ex­
pressed in terms of the values of T on an orthonormal set complete 
in a certain subspace. Thus T is analysed into components which de­
termine it by addition and closure. Another interesting property of 
these resolutions associated with T is the fact that if ƒ is such that 
for every g&TliÇK) (the range of £i(X)), \f+g\ ^ | / | and if Tf exists 

then|r/+rg|^|r/|. 
When one considers a c.a.d.d. T in a general reflexive Banach 

space,3 many properties lose their significance, but those mentioned 
above do not. Since they indicate a complete analysis of such trans­
formations one is led to consider the possibility of generalizing the 
notion of a resolution of the identity and the association of two of 
these with a c.a.d.d. T. 

At least five such generalizations are possible. However, the com­
plete analysis given above cannot be carried through in general linear 
spaces at present because of various unsolved problems of these 
spaces. In the present talk, we show the dependence of this analysis 
upon these problems and classify the problems from this point of 
view. It is hoped that this will result in a more systematic develop­
ment of the theory of linear spaces. 

2. Projections. The difficulties appear in attempting to generalize 
the notion of a projection. Let us consider the usual notion of a pro-

An address delivered before the Washington meeting of the Society on May 2, 
1941, by invitation of the Program Committee; received by the editors July 18, 1941. 

1 Cf. [11, chap. 9] , or [8, §5, pp. 312-318, in particular Theorem VI, p. 315]. 
2 Cf. [8, loc. cit .] . _ 
3 We shall follow the notation of [l ]. A reflexive space is one such that S3 = S3. 
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jection in Hubert space and endeavor to express its properties in 
terms which generalize to Banach spaces. This can be most readily 
done in terms of the range 9ft of E and the set 31, of f s such that 
Ef=0. The following properties are present: 1. For every ƒ in § , there 
is a g in 9ft, (# = £ƒ) and an/* in % such that f=g+h. 2. 9ft.$ft={0}. 
3. 9ft and Çft are closed additive sets.4 4. h in 31 and g in 9)?, imply 
\h+g\^\h\. 

In Hubert space, given 9ft, these properties5 determine a unique 
self-adjoint E, with domain § and bound 1. In suitably restricted 
spaces given a closed additive set, 9ft, 1 and 4 will determine 5ft.6 

Property 2 will hold but not 3 since 5ft in general will not be additive.7 

One may then abandon 4. If we are given 9ft, let us call an 5ft satisfy­
ing 1, 2, 3, a complement to 9ft. If 9ft has a complement, 5ft, the corre­
sponding E is a bounded linear transformation8 with E2 = E. Such a 
transformation we will call a bounded projection on 9ft. Since 4 is 
lost, E is not unique for 9ft, but this is not the worst difficulty. It can 
be shown that there exist manifolds 9ft, which do not possess bounded 
projections.9 

One may, however, be willing to substitute for the boundedness 
of E just closure. If we substitute for 1, the Property 1': for a dense 
set oi fs,f=g+h, g£9ft, &£5ft (Ef=g), we will call an 5ft satisfying 
1', 2, 3, a quasi-complement to 9ft. The corresponding E is closed and 
if we have a c.a.d.d. E with E 2 = E, and range 9ft, then 9ft has a quasi-
complement.10 The following problem arises: 

PROBLEM I. In a linear space, does every 9ft possess a quasi-comple­
ment?11 

If 9ft does not have a complement it must be "infinite," that is, 

4 Properties 2 and 3 insure the uniqueness and additivity of the resolution given 
i n l . 

6 The Condition 4 implies that 5DÎ and Sft are orthogonal, since | h-\-tg\2^ \h\2 for 
any complex t implies (h, g ) = 0 . Thus E is the orthogonal projection on SO?. Cf. [15, 
Theorem 1.23, p. 22 and Definition 2.16, p. 70] or [ l l , chap. 2, §5, Theorem VI and 
chap. 6, §1, Definition l ] . 

6 Cf. Appendix I, remark preceding Lemma 4, 
7 In Appendix I, ^ is the set of ho s such that F(hQ)*=\ F\ • \h0\ for an FGffllx. 

We may make this correspondence more precise by letting \ F\ = | ho\. Even when this 
correspondence is one-to-one as say in Lp or lv (p7*2) it is not linear and 91 the image 
of a linear set will not be linear in general. 

» Cf. [10, proof of Lemma 1.11 ]. 
9 Cf. [10]. 
10 The proof of these statements is similar to that of [10, Lemma 1.11]. 
11 These problems are of greatest interest when 23 is reflexive. 
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infinite-dimensional and having no finite complement. We also ask: 

PROBLEM I I . Do there exist Banach spaces such that every infinite 
manifold has no complement (quasi-complement)? 

Since the Banach space 33 and any closed additive subset 3JI in it 
are abelian groups, we may consider 53/5DÎ the quotient group of S3 
by 2JÎ. This is the set of classes of elements of S3, mod 5DÎ, that is, two 
elements/i and / 2 in 93 belong to the same class c, if/i—/sGSD?. 93/3DÎ 
is a normed linear space if addition and scalar multiplication of 
classes result from the corresponding operations12 of 93 mod 3R and 
| c | =g . l . b . ( | / | , / G e ) . If 23 is reflexive, 93/9W is complete.13 We say 
that 93 has been resolved abstractedly into 3R and 93/5DÎ. 

In Hilbert space, each class c of §/93? contains a unique h of SD?X, 
with | h\ = | c| and this correspondence h<^>c is linear. In a reflexive 33, 
the existence for every 3JI of a complement with these properties 
would imply that 93 is a Hilbert space.14 However, if additivity is 
dropped, we have for reflexive convex spaces an orthogonal 31 as we 
have mentioned above. 

3. Bounded transformations. Let us now consider the association of 
projections with bounded transformations. If T is bounded and 9JJ 
and 31 are complements then T takes 2JÎ into an additive set T3R 
and 31 into T31. Uf=g + h, gG9K, hS% Tf=Tg + Th. Thus every 
element Tf of 3lT, the range of T, can be expressed as a sum of ele­
ments of rSftand T3l,f' = g'-\-hf. If T"1 exists, we see that this resolu­
tion is unique, for gf=TET~1ff. 

Thus E has the corresponding operation TET~l in the range space. 
But even in Hilbert space, this transformation may be unbounded 
and may even have no closed extension.15 Thus a bounded T may not 
preserve the relation of complementation or quasi-complementa-
tion, even when T~l exists. 

12 The statement about the norm is the most interesting but is not particularly 
difficult. The closure of 9ft insures that if | c | = 0 , c contains 6 and is precisely Wl, the 
0-class for addition, modulo 9ft. Obviously | a c | = | a | • | c | and the triangle inequality 
is obtained by a simple e-proof. 

13 Cf. Appendix I, Lemma 6. 
14 Since fc = ( l - E ) / a n d \h\ ^ |ƒ | , we see that 1-JE has bound 1. But (1-JB)* 

= 1 —£*, which would also have bound 1. We have supposed that S3 is reflexive and 
thus to every SW'ÖÖ, wecan find a 9 9 ? C $ , such that 9ftx = $ r . Hence every S f t ' C ^ 
has a projection of bound 1 on it. This implies that S3 is a Hilbert space and that 
J8 = » (cf. [4] or [13]). 

15 Cf. Appendix II . 
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However, for the special resolutions Ei(X) and E2(K) associated with 
T as in §1, in Hubert space, we do have that complementation is pre­
served.16 Also in Hilbert space, if 5DÎ is such that T is an isomorphism 
on 5DÎ, then a bounded T preserves complementation for at least one 
complement.17 Thus we are interested in the 5DÎ, for which T preserves 
complementation. 

To obtain a precise statement of our problem, let us find the exact 
conditions under which the equation TEi = FT determines a trans­
formation F. Now let g be given such that there is an ƒ for which 
Tf=g. Then TEif=Fg defines a transformation F, if Tfi=Tf2 im­
plies TEJ=TE2f or if T(f1-f2) = 6 implies TE1(f1-f2) = 6. Thus we 
will have an F determined by T and EUE projects the set of zeros 
of T, %IT, onto part of itself. If SÎ^D-Kr or SHE1'D

(iflT then this con­
dition is certainly fulfilled. 

Now a bounded projection, Ei, will be said to be associated with a 
bounded T (abbreviated Ex b.A.b. T) if S R j O ^ r or SROSRr and if 
the corresponding F has a bounded extension (which will be a bounded 
projection E2). We suppose that 9îr is dense in 33a. 

PROBLEM I I I I . Given a bounded T,find the set of bounded projections 
associated with it. 

One can associate a closed projection with a bounded T in an analo­
gous manner (E\ c.A.b. 2") and one has a corresponding Problem III2 . 

4. Closed transformations. Let us consider the similar problems for 
c.a.d.d. transformations. A closed transformation is characterized by 
the fact that the "graph," the set of pairs {ƒ, Tf) in 33i0932, ƒ in $) r , 
is closed.18 

Given a projection E\ the resolution in 33i, f=g+h, yields a resolu­
tion of the graph of a bounded T, {ƒ, Tf} = {g, Tg} + {h, Th}. The 
graph of a bounded transformation with domain 331 is isomorphic 
to 33i, and thus this latter resolution will be determined by a projec­
tion Ei>2 which is defined by the equation Ei,2{ƒ, Tf} — \E\f, TEif}. 

The situation is different in the case of a c.a.d.d. T. Since T)T is 
no longer 23i, it may not include SR^ whether E\ is bounded or closed. 
Thus if E is a one-dimensional projection on an element not in 3)r> 

the resolution cannot be imported into the graph. 
This difficulty appears even in Hilbert space. When one is forced 

to deal with it in defining reducibility, one appends the condition: 
16 Cf. [8, §5, pp. 312-318]. 
17 Cf. Appendix I I I . 
18 The graph is discussed in [16, pp. 299-301], [8, pp. 302-307], [9, pp. 88-91], 

and [ l l , chap. 4] , 
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"/£2Dr implies E i / G S r . " When this condition is applied to either a 
bounded or closed19 E\ in 58i, one sees that Elt2 must be defined 
throughout the graph and hence is bounded.20 

On the other hand, if one starts with a bounded projection Ei,2 in 
the graph, Ei,2{ƒ, Tf} = {g, Tg}, then the equation Eif=g may not 
determine a transformation with a closed extension.21 Even if both 
Ei and £1,2 are bounded, however, the F defined by the equation 
TE = FT may not have a closed extension.15 

DEFINITION. A hounded projection, Ei, will be said to be associated 
with a c.a.d.d. T, (Eib.A.c. T) ij'^IE'D^IT or ^IEDSSIT and £2 is hounded. 
A closed projection will he said to be associated with a c.a.d.d. T 
(E\ c.A.c. T) if ^E'D^T or ÏÏÏ^DSftr, Ei,2 is bounded and £ 2 has a 
closed extension. 

We then have Problems III3 and III4 analogous to IIIi and III2, 
with T closed rather than bounded. 

5. Abstract resolutions. We have discussed the preservation by T 
of complementation and quasi-complementation. Let us now con­
sider abstract resolutions. 

If T is c.a.d.d. and SJt is a manifold such that S) r is dense in 3ft, 
and W is the closure of the set of Tfs with ƒ in SDÎ, then we can 
consider a transformation T from iSi/SDÎ to Î^/SD?', defined as follows. 
Let cG»i /2R a n d / G c . Then Tf&c'ES&t/m'. Now if / i is also in c, 
JjfiGc', and thus c' depends only on c and we define T^ic = c'. 

Now 7\jft is readily seen to be additive and its domain is dense in 
Söi/SDt. In general, however, it is not closed,22although for T bounded, 

19 For E\ closed the existence of E\f for ƒ in £)r is implied. 
20 When Ei,2 is denned by the equation £1,2 {ƒ, Tf] = {£,ƒ, TEif} and £1 satisfies 

the given condition, then £i f 2 is bounded. For let 9Ki,2 be the set of pairs {ƒ, Tf] for 
which ƒ is in Wli, the range of £1, and let $fti,2 be the set of {g, Tg\ with g E 9li. We 
prove that £1,2 is bounded by showing that £D2i,2 and Sfli,i are complementary (cf. 
Footnote 8). The Conditions 2 and 3 on SWi,2, S'il,2 follow from the corresponding con­
ditions on fflli, -Jli and 1 follows from the given condition on £1. 

21 This is true even in Hubert space. Let ^ be realized as the space 82 on the inter­
val (0, 2x). The set of pairs, {exp(inx), —n exp(inx)}, n — 0f ± 1 , ± 2 , • • • and 
{exp(x)— exp(27r—x), i(exp(x)+exp(2x—x))}, are orthogonal. Let Ï denote the 
manifold determined by these pairs in $ 0 $ . It is readily seen that X is the graph of 
a transformation T, that is, if {o, g} is in X, then g — d. Now if £1,2 is the projec­
tion of X onto the manifold determined by the pair {exp(#) — exp(27r—-x), i(exp(x) 
+exp(27r—x))} then the corresponding £1 has no closed extension. This is an im­
mediate consequence of the fact that £1 is zero on the dense set determined by the 
exp(inx) for » = 0, ± 1 , ± 2 , • • • . 

22 Cf. Appendix IV. 
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Tm is bounded. On the other hand,23 T%i and T on 9ÏÎ do not deter­
mine T. 

But suppose T and 9DÎ are such that if ƒ is in &T and in cGS3i/9K, 
then c contains a minimal element h, which is also in ©^ and Th is 
minimal in Tg^c. We say then that T preserves minimality relative 
to 9Ji. For reflexive convex spaces, T<$n itself is then closed.24 

We will say that the abstract resolution of a manifold SD? is associ­
ated with a closed T if T preserves minimality relative to 9JÎ. 

In Hubert space, the resolutions associated with T are precisely 
those which break T, that is, those which reduce25 (T*T)112. Thus 
this criterion determines the manifolds more precisely than the pre­
vious ones. 

PROBLEM I V I (IV2). Given a bounded T (c.a.d.d. T),find the abstract 
resolutions associated with it. 

In Hilbert space the answer to these problems is known. In general 
linear spaces the answer is not so interesting but we will consider 
other generalizations of the manifolds which reduce (T*T)1/2. 

Notice that if the abstract resolution with respect to SD? is associ­
ated with T1, the latter can be regarded as resolved into linear com­
ponents of T on 9ft and Tg». This notion is particularly interesting 
for 9D? = ïïlr, whose abstract resolution is associated with T. 

6. Bases. We now consider the general problem of reducing T to 
linear components, rather than to the special case in which there are 
only two components. One such resolution is given by any basis for 
the graph and thus we may consider the basis problem. 

Banach defines a basis [l, p. 110] as a sequence of elements {ƒ»•} 
such that to each ƒ £33, there exists a unique sequence of numbers rji 
such that f=^2iLiVifi' This definition implies that rji = Fi(f) is an ad­
ditive linear functional of ƒ [l, p. 111]. 

PROBLEM V. Does every separable Banach space have a basis? 

The graph of a bounded transformation is isomorphic to the do­
main space and thus a basis in 93i determines a basis in !£, and hence 
a resolution into irreducible linear components. For a closed trans­
formation one must consider the graph directly. 

23 A two-dimensional example will make this clear. Let Ta be defined by the equa­
tion Ta{x, y] = {x-\-ay, y}. If Wfc is the set of vectors {x, 0} , one sees that Ta on 9ft 
and Tqji do not determine Ta. 

24 Cf. Appendix V. 
25 Cf. [8, §5, pp. 312-318]. 
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For a bounded T, given a subsequence of a basis {fia} such that 
^2viafia converges for every ƒ one would consider the corresponding 
projection Ef=J^Jr)iafia. However, it is not known whether every in­
finite subsequence of a basis series is convergent. When every such 
subsequence is convergent, we will call the basis an absolute basis. 
The existence question for these is also important and we shall call 
it V2. We also have this problem : 

PROBLEM V I I . Is every basis an absolute basis? 

7. Resolutions of the identity. A basis can be regarded as a special 
case of a resolution of the identity. One way of defining the latter 
notion is given by Lorch [5, Definition 4, p. 226]. This is the most 
restrictive way. A family of projections E(K) is said to constitute a 
resolution of the identity: 1. if 0 and 1 are in the family; 2. if X^/x, 
EÇk)E(fx) — E (fi) = E(fx)EÇK) ; 3. if there exists a constant i t , such that 
for any real numbers a», bi, (i=lt • • • , n) with a\Sb\S • • • So>iSbi 
S • • • San, bn and for any complex numbers fa with \[n\ ^ 1 , the 
bound of the operator ^2a^i^a(E(ba) — E(aa)) does not exceed K. 

One may point out that if one replaces the condition |JU*| ^ 1 by 
I \Xi I = 1, the new Condition 3 ' is equivalent26 to 3. This type of resolu­
tion will be referred to as an absolutely bounded resolution of the 
identity. Other definitions of a resolution of the identity may be ob­
tained by replacing the Condition 3 or 3 ' by any one of the follow­
ing: 3 " . There exists a K such that for every X, the bound of EÇK) is 
less than or equal to K. 3'". The E(\) exist and are bounded except 
possibly on a denumerable, nowhere dense set of points. 3 I V . Each 
EÇK) is closed. The corresponding resolutions will be termed, respec­
tively, bounded, essentially bounded, and closed. To make our exist­
ence problem definite we also introduce the definition. 

If /G33, and ai, bi, • • • , a», bn are as in Condition 3 above, let 31/ 
denote the set of g's for which there are Xa's such that g =^2a^i^a(E(ba) 
— E{aa))f. If there is a n / , such that 31/ is dense, then we say that the 
resolution of the identity has a simple spectrum. 

PROBLEM VIII . Does every separable Banach space contain an abso­
lutely bounded resolution of the identity with a simple spectrum? 

For bounded, essentially bounded or closed resolutions, we have 
the corresponding Problems VII2, VII3, VII4. 

20 A proof of the equivalence of 3 and 3 ' can be outlined as follows: If |ju| = 1 
(/x real), then | /+Mg| ^ m a x ( | / + g | , | / — g \ ) . This can be used to show that for a 
given set of ju^s and a n / , we can find a set of et's with | €»| = 1 , such that [£ni(E(bi) 
-E(ai))f\ ^ Ee<(E(ft<) -E(ai))f\. This can be used to show that the least K of 3 ' 
is greater than or equal to the least K of 3. 
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Now corresponding to a basis, we can find a bounded resolution of 
the identity.27 A basis is absolute if and only if the corresponding 
resolution is absolutely bounded.28 Thus we may generalize Problem 
VIi to the following problem : 

PROBLEM VI2. Is every bounded resolution of the identity absolutely 
bounded? 

8. Resolutions and transformations. We need to consider only reso­
lutions such that Ei(X) = 0, if X < 0 . A resolution E(\) will be said to 
be associated with a transformation T: 1. if E(0) is the manifold of 
zeros of T. 2. If the resolution E(K) is absolutely bounded, bounded or 
essentially bounded and EÇK) is bounded, then T and E(K) are as­
sociated as in Problems III i or III3. If the resolution is considered 
simply as closed, then T and EÇX) are associated as in Problems III2 

or III4. 3. If the resolution E(k) is absolutely bounded, bounded or 
closed and 0<a<(3 then T is an isomorphism on the range of 
E(fi)—E(a). If EÇK) is essentially bounded and 0 < a < / 3 and there is 
no singular point between a and /5, then T is an isomorphism on the 
range of £ ( / 3 ) - E ( a ) . 

A special case is that in which T takes the range of E((5)—E(a) 
into itself. (Here certain of the above restrictions may be ignored.) 
Lorch has shown that if T is associated in this way with an absolutely 
bounded resolution, then one has an operational calculus for T [5] 
and the converse of this is quite simple. 

On the other hand one can show that there exist bounded trans­
formations which are not associated with any absolutely bounded or 

27 Given a basis, Xi, x2, • • • , with the corresponding functionals, / i , ƒ2 • • • , a 
resolution of the identity can be obtained as follows: Let {A;} be a sequence of posi­
tive numbers such that 0 < X i < X 2 < • • • < l , and lim^00Xl = l. Let n(\)=0, for X<Xi, 
n(X) = n if Xn ̂  X < \n+l and f or X ^ 1, n(\) = 00. Then for n(\)=n let E(\)y = X X i U (y)*i 
Since the partial sums of a convergent biorthogonal series are uniformly bounded, the 
£(X)'s are readily proved to constitute a resolution of the identity. 

28 In the construction of the preceding footnote given any finite subset x( , • • • , xJi 
of the Xi, x2, • • • and corresponding functionals,// , • • • , fJi, we can find a set at, 6» 
such that ^2(E(bi) —E(ai))y = Y^7=ifi (y)xi • Thus if the corresponding resolution is 
absolutely bounded, the partial sums of the subsequences are also uniformly bounded 
and the basis is absolute. The proof of the converse is longer but not essentially more 
difficult. ln^T,iui(E(bi) —E(ai)) we consider the real and imaginary parts of the sum. 
In either part, we can replace the corresponding part of fit by either + 1 or — 1 and 
at most increase the bound. Thus it can be shown that the bound of the given sum 
does not exceed the sum of the bounds of four sums in the form £ £ ( & ; ) -E(ai). The 
uniform bound of the latter is of course determined by the uniform bounds of the arbi­
trary partial sums if the given basis is absolute (cf. [6, pp. 564-566]). 
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even bounded resolution of the identity.29 However we may still ask 
this question : 

PROBLEM Vi l l i . Does every bounded transformation possess an es­
sentially bounded resolution!^ 

A similar Problem VIII2 arises when we simply ask for a closed 
resolution. A closed transformation determines a bounded transfor­
mation from the graph to the domain space A {ƒ, Tf} =ƒ. It is readily 
seen that if A possesses a resolution, T will also. Thus we need not 
consider closed transformations. 

9. Abstract resolutions and transformations. One may also at tempt 
to define the notion of association, relative to the abstract resolu­
tions on a family 9Jî(X) of manifolds. Here again we need only concern 
ourselves with bounded 7" s and a tentative definition is: 1. 9W(0) 
is VIT. 2. 9K(X)C9W(M) for X < M . 3 ' . 5DÎ(X) is associated with T as in 
Problem IV. 

What is desired here is a generalization of the notion of the resolu­
tion of the absolute value of the transformation and a consideration 
of examples with finite-dimensional domain spaces shows that here 
this definition does not yield the desired result. Nevertheless in these 
cases the usual "choosing the maximum" construction does yield a 
family $D?(X) for 0 < X < C , C being the bound of T with the Proper­
ties 1, 2 and 3. T has bound X on SDÎ(X), and 4. The family $ft(X) is 
maximal, that is, if /(£9K(X), there exists a X'^X, for which/ESftfV) 
implies that 2 or 3 is false. 

For our general discussion, we introduce the following definitions : 
$D? will be said to be an over-X-manifold if /G5DÎ implies | Tf\ è X | / | . 
f̂tCSB will be said to be a coverover-X-manifold if | Tf | ^X | ƒ] implies 

that there is an F in ^fl with F(f)y^0. Similarly we define an under-X-
manifold and coverunder-X-manifold. 

In Hubert space there are manifolds which are both over-X-mani-
folds and coverover-X-manifolds. Since in more general spaces, these 
are in different spaces, one can't expect this result to generalize read­
ily. However it may happen that 9K(X), for X<0, may have a com­
plement or quasi-complement which is an over-X'-manifold for X'> 0. 
We say then that the resolution 5DÎ(X) is conjugated and thus we have 
this problem : 

29 Cf. Appendix VI. 
30 If an e.b. resolution is associated with T, it is not in general unique. However 

if the answer to Problem VIIi is yes and one e.b. resolution exists for T, then there is 
also one with simple spectrum. In general, each Problem VIII can be referred to the 
projection situation for WIT and the answers to Problems V or VII. 
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PROBLEM IX. Do there exist transformations T which do not possess 
a conjugated manifold family? 

One can establish without great difficulty, the existence of a family 
of manifolds 2)1 (X) with the Properties31 1, 2, 3, 4. The definitions 
yield that if SD? is a maximal under-X-manifold, 9KX is a minimal cover-
over-X-manifold. 

10. Comment. The above discussion shows clearly the approach to 
the analysis of a specific transformation T. For instance, let us con­
sider the problem of determining the projections E, which are associ­
ated with a given T as in Problem IIIi. Suppose T~l exists. This 
association is equivalent to the statement "TET~l is bounded." Sup­
pose the bound is k. Let 9K be an under-X-manifold for T and an over-
(7-manifold for E. Then E$Jl must be an under-^X/cr-manifold for T. 
For a bounded E a similar condition is sufficient. Thus the problem 
can be referred to the X-manifold. 

PROBLEM X. Given T, find the various \-manifolds. 

While this discussion does not present an exhaustive list of the 
problems one meets in this field, the others are apparent from the 
given considerations. 

APPENDIX I 

We establish certain results which are essential in the theory of ab­
stract resolutions. We consider a vector space $8 and 9W a closed linear 
set in 33. Let 33/SD? be as in §2 and 93^ denote the conjugate space to 
S/2R. 

LEMMA 1. 9ft1 and 93gfl are isomorphic. 

Let us correspond to a functional G in 33^, a functional F on 93 de­
fined by means of the equation F(J) = G(c) if ƒ £ c . One can readily 
show that F is linear with \ F\ =\G\ and .FGÜD?1. On the other hand, 
given an JFG9ftx, we see that F(f) is a function of the class, modulo 9ft, 
of/, that is, F(f) = G(c),/£c, for some G £33^- Thus the correspond-

31 Suppose that the bound of T is 1. To obtain the manifolds 2ft(X), w e proceed 
as follows: It is easy to prove that if Wfl is under-X, there is a maximal under-X-
manifold which contains it. Thus we may take 2ft(l/2) as a maximal under-1/2-
manifold which contains Sftr, 9ft (3/4) as a maximal under-3/4-manifold which contains 
2ft(l/2), 9ft(1/4) as a maximal under- 1/4-manifold contained in 9ft(l/2) and con­
taining SHIT, and so on. For other values of X between 0 and 1, 3ft(X) is the intersection 
of the manifolds defined for larger values of X. The resulting family can be shown to 
have the Properties 1, 2, 3, 4. 

file:///-manifolds
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ence, F~G is one-to-one between Wlx and 93$̂  and metric preserving. 
Finally one observes that it is additive and hence 93^ and %Jlx are 
isomorphic. 

LEMMA 2. Suppose 93 is reflexive. Given an element coG93/9JÎ, there 
exists an &oG93 such that if FÇ^ffll*' corresponds to GG93gw as in Lemma 
1, then F(h0)~G(co) and \ho\ = | c o | . 

Each co in 93/9JÎ determines a linear functional Ko(G) of the GG93$rrc, 
with Ko(G) = G(co). Correspondingly, we have an H0 defined on SD?X 

such that Ho(F)=K0(G). Now Ho has an extension H defined on 93 
with |£T0| =\H\ and such that for FG9t t \ H0(F)=H(F) [l, corol­
lary p. 29]. (For the extension giving complex homogeneity refer to 
[2]. A similar proof is given in [9] for 93 = L„ which can be readily 
generalized.) Since 93 is reflexive, there exists an &oG93 such that 
F(h0) = H(F) for all 7?G«. Thus if F~G as in Lemma 1, G(c0) = K0(G) 
= Ho(F)=H(F) = F(ho)and |c„| = \K0\ =\H0\ =\H\ =\h0\. 

LEMMA 3. The ho of Lemma 2 is in Co and minimal in Co, that is> 
ho is such that | /zo+g| ^ | h0\ for every g in Wl. 

If /Geo and ^G9KX, we have a GG93^, such that F(f) = G(cQ) 
= F(h0). But F(f) = F(h0) or F(f-h0) = 0 for every F&Wf implies 

/-ftoG(2ttJ,) ,L- Now (<m±)x = m since 93 is reflexive. (Cf. [9, proof of 
Theorem 1.3, p. 85].) Thus f— /^oGSft, which implies, since /Geo, that 
AoGco. Since I ^o| = | c o | , \ho\ û\f\ for every ƒ Gc0 . Furthermore h0+g 
is in Co for gGSD? and thus we have shown the second statement. 

A space is said to be strictly convex, if | / + g | < |ƒ| + \g\ when ƒ 
and g are not linearly dependent. 

LEMMA 4. The minimal ho is unique, if 93 is strictly convex. 

If I Co j = 0 , the minimal element is precisely 6. Suppose |co| 5*0 and 
that ho and h are distinct minimal elements. It is readily seen that ho 
and h are linearly independent and that also ^(ho+h) is in Co. Since 
strict convexity implies that | i(h0+h)\ < | | h0\ + | | h\ = | c 0 | , we 
have a contradiction and only one minimal element is possible. 

J. Clarkson has shown that if 3} is uniformly convex (cf. [3, Defini­
tion 1, p. 396]) then each Co contains a minimal element ho. This re­
sult is unpublished and is less general than that given above (cf. [8] 
or [l2]). In this connection one should also mention the result of 
Clarkson [3, p. 413], that any separable Banach space can be assigned 
an equivalent norm, which is strictly convex. 

In the cases in which the minimal element is unique, conditions 1 
and 4 of §2, determine precisely the set $i of minimal elements. 
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LEMMA 5. The set of elements ho, minimal relative to ÜD?, is the set of 
elements h for which there is an F^Q and GSK1, such that \F\ -\h\ 
= F(h). 

Suppose F^O and G9K1 and h are such that | /7| . | &| = F(h). Thus 
ifgGSK, ^(g) = 0and \F\ -\h+g\ ^F(h+g) = F(h)=\ F\ -\h\. Hence 
| h+g\ è | A| and ^ is minimal relative to SDÎ. On the other hand sup­
pose ho is minimal relative to 9W and /ÊO£C0. There is a GoG^W such 
that GOT^O and |C?o| • | c 0 | =G0(c0). (Cf. [l, chap. 4, §2, Theorem 3, 
p. 55].) By Lemma 1, we have an FEW1, with | ^ | = | G 0 | and 
F(h0) = Go(co) = I Go I • I Co I =\ F\ '\h\. Thus ho is an h for which there 
is an /*,£SD?J' such that F(h0) = | F\ -\ho\. This completes the proof of 
the lemma. 

Another result is this lemma : 

LEMMA 6. If 38 is reflexive, then 33/SDÎ has the same property and in 
particular is complete. 

PROOF. Let t(G) be a linear functional on the set of linear func­
tionals on 33/5DÎ. Correspondingly there is a functional tf(F) on Wlx. 
This can be extended to 33 and hence t'(F) = F(k) for some k of 53. 
If c is the class of jfe, we have t(G) = tf(F) = F(k) = G(c). Thus 33/9JÎ 
is the set of linear functionals on a complete space and is readily 
proved to be complete. 

APPENDIX II 

Let 5DÎ and %l be orthogonal complements in § . Let T be bounded, 
$IT dense and such that T~l exists. We shall show that there exist T's, 
SOTs and 9Ts such that the closure 2»' and W of T9K and T^l are 
neither complementary nor quasi-complementary and if E is the pro­
jection on SD?, TET~l does not have a closed extension. 

Suppose we have a complete orthonormal set 0o, 0i, • • • and a se­
quence of numbers X z>0, with Yl£-oX*< oo. Let j8»-= (1 — X?)1/2. Define 
a transformation Tn by means of the equation r / / 0 l = Xt(Xi0i+i+i8i0o) 
and let T' be defined as the least additive extension of T". (Cf. [15, 
p. 45, Theorem 2.10] or [ l l , Definition 4, p. 32].) 

T' is bounded. For the domain of T' consists of those f s in the 
form XXoa»0»' and each a» is such that | a , - | ^ | / | . Then \T'f\ 

= IZïUa^l ^Lîukl I T^\ ^ST-ol/l -x<f l/IEN gc|/|. 
Since ÜT' is bounded, it possesses a bounded extension, JP with domain 
the full space. (Cf. [15, p. 57, Theorem 2.23] or [ l l , p. 10, Theorem 
II].) 

For T, we have that Tf=9 implies ƒ = 0. For let /=^îLoa.-</><- Then 
r/=E"-ooA<(Xi0«+i+0i0o) = E r - o X ^ O t f o + E ' - i t f a i - i t f * Thus i y 
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= 6 implies X*a;_i = 0 for i = 1, 2, • • • or a t = 0 for i = 0, 1, • • • . Hence 
f =6 and Thas an inverse. 

9?r is dense, for $lT contains X»0M-I+J3»-#O and since X»—*0, ft—>1, 
the closure [9îr] must contain <£0. Subtracting /3»0o, we can show that 
[9îr] also contains 0 t + i for i = 0, 1, • • • . Hence [9îr] contains a com­
plete orthonormal set and is the full space. (Cf. [ i l , p. 21].) 

Let Wl be the closed linear manifold determined by the 0 / s with 
even subscripts, 5ft by those with odd subscripts. 99? and Sft are orthog­
onal complements. I t is readily seen that [T^SJl] and [TSfl] both con­
tain 0o and thus are not even quasi-complementary. 

If E is the orthogonal projection on $)?, TET~X = F does not have a 
closed extension. For let /* = X2fc02*+i+j32fc0o, then Ff =ƒ and ƒ&—>0o. 
Hence if i7 has a closed extension [F] then [̂ ]</>o would exist and 
equal <f>o. On the other hand, if gk=^2k+x<i)2k+2+fi2k4>o, we have Fgk = 6 
and gk~^4>o. Thus if [F] exists, we would have [F]<fi0 = 0. This contra­
diction shows that [F] does not exist. 

While the above argument is given only for Hubert space, it can be 
readily extended to any space having a basis, 0O, 0i, • • • for which 
there is a k such that ƒ=^£-00*0» implies | at-| ^S&|/|. 

APPENDIX III 

Let T be a bounded transformation from § i to § 2 or in § and let 9JÎ 
be a closed linear manifold such that T is an isomorphism on SDÎ. We 
shall show that T preserves complementation for at least one comple­
ment to Wl. 

Let WH= T be the canonical resolution of T where H is self-ad­
joint definite, Impartially isometric. (Cf. [ló, Theorem 7, p. 307] or 
[8, Theorem 1.24, p. 312] or [ l l , chap. 9, p. 95].) Let I?" have the 
form f™\dEiCk). We suppose, as we may, that ^ is precisely the 
closure of the range of T. 

LEMMA 1. There exists a c.a.d.d. transformation T" from § 2 to §1, 
whose domain is ^T and whose range is the range of 1 — JEi(O) and which 
is such that r r / 7 C l , T"T= 1 -Ei (0) . 

If &£9?r, there is a unique g in 9îi_#l(o) such that Tg — h. hÇ^fàr 
implies tha t there is an ƒ such that Tf=h. Let g = ( 1 - £ i ( 0 ) ) / . 
TEi(0) = 0 implies Tf=Tg — h. This g is uniquely determined by h. 
for if Tgi = h=Tg2, we have that T(gi — g2) = 6. Thus gi —#2 is in the 
range of Ex(0) and 1 -Ei (0 ) and hence is 0. Let T"h = g, 

From the above, we see that if h is in 9î r , then TT"h=Tg = h 
and thus TT"C1. For g in {Ri-.*l(0)> T"Tg=Th = g and if ƒ is in 
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9t r = 9fti_tfl(0), T"Tf=T"0 = 0. The linearity of T"T yields that 
r , / r = l - E i ( 0 ) . 

LEMMA 2. Let F be a projection $DÎ = $ F , 9Î = 9ÎF, WDWT. If TFT" 
is bounded, its closure is a projection and $1''and Ware complementary. 

F2=TFTn has domain dtr which is dense. Thus [F2] has domain 
§ 2 . Since WOSRi, FEi(0) = 0 and F(l -Ei(O)) = F. Thus TFT"TFT" 
= r ^ ( l - E 1 ( 0 ) ) J P r = r ^ 2 r / / = r ^ r / . Thus F2F2 = F2. This yields 
[F2]

2= [F2], since F is bounded. Thus [F2] is a projection. 
9ftF2= Tm for F2=TFT" implies Sfr .crSK while if gGT9W, g= Tf, 

ƒ <E 9ft and 
£2g= TFT"Tf= TF(I - £ ( o ) ) / = r £ / = r / = g . 

Thus for ^GraW, £2g = g. Thus 5RFî=r9K and <${{F2] = W. 
A similar discussion will show ÇHIF2—TÇ]SI since 9f09fly. Now if 

g&ftT = $)Pv then g = Ai+*2, hETWl, JhETSt and £2g = /*i. Now if 
[£2]/= Of there must be a sequence of such g's approaching ƒ with the 

corresponding hi s approaching 6. Thus ƒ is also the limit of the h2§ 
and hence is in $1'. Thus 9fl/ = 9ft[/r2]. 

Since .F is bounded these facts show that 9ft' and $1' are comple­
mentary. 

LEMMA 3. Le^ T be an isomorphism on 9ft. Then there exists a X0>0, 
such that 1 — £i(Xo) when contracted to 9ft is also an isomorphism. 

Since T is an isomorphism on 9ft, there exists a constant C such that 
for /G9ft, I r / | ^ C | / | . (Cf. [l, chap. 3, Theorem 5, p. 41] or [ l l , 
p. 50, Theorem IV].) This may be written 

I TE1(C/2)f+ r ( l - £i(C/2)X/f ^ CÎ| / f . 

Since T preserves orthogonality for manifolds which reduce H [Sf 

§5, Definition 1, p. 312 and Theorem IV, p. 313], we get 

I Z\Ei(C/2)/|* + I T(l - £i(C/2))/ |* ^C*\f\\ 

This implies, if C\ is the bound of T, 

(C/2)*| £ i (C/2) / | 2 + Cî| (1 - Ei(C/2))/|« à C 2 | / | 2 . 

Using | £ i (C /2 ) / | 2 = l/l 2 - I ( l - £ ! ( C / 2 ) ) / | 2, we get 

(CÎ - C2/4) I (1 - 2?i(C/2)) ƒ 12 ^ (3/4)C21 ƒ |2 . 

Thus there exists a constant X" such that | ( l - £ i ( C / 2 ) ) / | 2 ^ i £ 2 | / | 2 

for all ƒ in 9ft. Since 1 —E(C/2) is bounded this establishes the result. 
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Let B be the contraction of 1 —Ei(C/2) with domain (3Jl. From the 
above we see that B~l exists and has bound K~l. B is closed since it is 
defined on a closed linear manifold. Since B~l exists and is bounded 
2R = SR* is also closed. à»C9ti-*(c/2>, C»i-jf l (o), and WDWT. 

LEMMA 4. r f î i (X 0 ) r " and T(l - E i ( X 0 ) ) r " have bound 1. 

We have TE1(K0)=E2(K0)T and r ( l -£i(X 0 ) ) = (1 -E2Çk0))T (cf. 
[8, §5, Definition 1, p. 312 and Theorem IV, p. 313]). Applying T" 

first we get TE1(\0)T"CE2Çko) and T(l-El(\0))T
nCl-E2ÇK0) and 

hence TE1ÇKo)Tn and T{\ - E 1 ( X 0 ) ) r , / have bound 1. 

LEMMA 5. /ƒ SD? = 9?^ is included in the range of 1—Ei(X0), X0>0, 
then TET" is bounded. 

If E is the orthogonal projection on 9DÎ, E = E(1 — £i(X0)). The trans-
formes rEr , , = rE(i-E1(Xo))r,,= rl(i-£i(o))(i -E1ÇK0))T" 
= TET"T(l—E1Çho))T". T is an isomorphism on the range of 
1— JEI(XO) and hence the complementation of 9ft and §O9D?i(X0)O2ft 
relative to §0$D?i(Xo) must be preserved as a complementation rela­
tion relative to the range of 1—E2(X0). Thus TÊT" is bounded rela­
tive to the range of 1 —E2(X0) which includes that of T(\ —Ei(X0))r / ;. 

since r(i-E1(Xo))r/,isaiso bounded, rEr,/r(i~£i(Xo))r,,=rEr,/ 

is bounded. 

LEMMA 6. TB~lT" exists and is bounded. 

First we establish that the domain of TB~XT" is T$Jl. For QTB-IT" 

= £)JB-1r. Since T and Tn are in an inverse relationship relative to 
9ti-! l (0), which includes 2ft, TM= r9?B = r£)B-i = 2)B-ir". 

For femC^i-ElM, we have | Tf\ £ X 0 | / | . Since T" and T are in-
versial for gET<m, \T"g\ ^ (1 /X 0 ) |g | • Since B"1 and T a r e bounded 
this yields the desired result. 

LEMMA 7. B~lÊ is a projection with range 9K and manifold of zeros 

âw1. 
Since S ^ l - E i ( X o ) and J3Cl -£ i (Xo) , we .have EB-xg = gJor g in 

9t! = 2R=9ta = S)2ri. Thus E B - l O and (B-lE)(B-xE)=B~lE. B~*E 
is bounded and has domain the full space since 9?ij = £)j3-i. Hence it is 
a projection. Since SRi = S)B-i, 9?B-ii = 5RB-I = £>B = 3K. Ï I ^ È ^ Ë 

= 2WX. 
We are now in a position to obtain our result. For TB~lET" 

= TB~l(l - £ i ( 0 ) ) E r " = TB-XT"TÊT" = {TB'xTn)(TÊT") which is 
bounded by Lemmas 5 and 6. Since SD^D^tr, Lemma 2 shows that T 
preserves the complementation of Sfft and 3WX. 
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APPENDIX IV 

We give an example in Hilbert space of a closed ÜT, whose domain 
includes a cl. 1 9ft, for which T%i is not closed nor has a closed exten­
sion. We first prove the following lemma. 

LEMMA. Let {{af\ a(
2
k\ • • • }} denote a sequence of sequences with 

the property that X X i1 ai&) 12~~*0> as ^—> <*>, and for a K independent of 
*. X £ i k f ^ l 2 ^ . Then X r = i k f |*->(), as &->oo. 

PROOF. NO clarity is lost if we suppress k. Let d — adl1. By hy­
pothesis, Xf=i M 2<#. Now Xr=jm 4 ^ =£r-jm2-*kl<*2-*31'2, 
by Schwarz's inequality. Our hypotheses also imply that for every 
N,^2f=1\ai\i-^Q. These results imply that lim sup X X i | a * l ' * 
<K2~N31'2 for every N. Hence X X i | at\ f->0. 

Let </>o, 0i, • • • be a complete orthonormal set in § , let i/'& = 02/b-i, 
for & = 1, 2, • • • and o^k = <p2k-2 for k = l, 2, • • • . We define a trans­
formation T" by the equations T" \pk = 4>k, T"o)k= — k2k<pk + kcl>Q1 

k = l, 2, • • • . J 7 ' has a linear extension J7 . ƒ is in the domain of T', 
if / = X X i 0 * * + E ? - i W * and r / = ( E ? - i ^ ) 0 o + E ? - i ( 6 ~ ^ 2 * ) * * . 

The condition that T' have a closed extension T is that whenever 
{/(A;)} is a sequence in the domain of T' such that |/a)|2—>0 and 
T'fik)—+g, then g = 6. Suppose we have such a sequence of ƒ s and let 
g=X*%c*0*- We shall show that g = 6. 

To do this we first show that c0 = 0. Suppressing the superscript we 
let ƒ determine a* and bi as above. Then X ^ i ^ ^ ^ o . Now we have 
since f—>d and Tf—>g, that X ^ i | a*l 2 + X ^ i | °^\ 2"~>0 a n d that there 
is a X such that X X i I bi-iai2

i \ 2<K. Since the X X i | 6 < l 2 a r e 

bounded we may even infer X ^ i | ^ 2 * |2 <K\ for a constant ÜTi. Our 
lemma now tells us that X X ^ ~ > 0 and thus c0 = 0. 

Since for i ^ 1, we have (bi — i2iai)—^cil we must also have C; = 0 for 
i^l. Hence g = 6. Thus ÜT' has a closed extension 7\ 

If 9K is the closed linear manifold determined by the \pk, T$R is the 
set determined by 0i, 02, * • * • Let cfc denote the class of (l/ft)cofc 
relative to SO?, which is also the class of hk = 2k\l/k + (l/k)œk. Now 
Thk=T,hk = 2k(l)k — 27ccj)k+(t>o=(l>0' Hence 77^=0o. Let c0 be the class 
of 0o relative to T9JI. Then \ck\ =l/k and hence c&—»0. Also 7^c& 
= c0—>c0, with | Co | = 1 since 0O is in (r9ft)x. Hence J1^ does not have 
a closed extension. 

APPENDIX V 

We suppose that each 33* is separable, regular (33* reflexive), and 
strictly convex. If T is closed and preserves minimality relative to 
99?, then Tm is closed. 
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For suppose {a} is a sequence of 33i/SD? such that c» and T^id are 
convergent t o e and c', respectively. Let hi be the minimal element of 
c», h that of c, g that of c'. 

There is a linear functional G defined on SBi/SDî such that G(c) 
= | G | - | c | . As in Appendix I, there corresponds an i7G9Kx with 
\F\ =\G\, F(h)=G(c) = \G\ -\c\ =\F\ -\h\. Also F(Jn)=G{ci) 
~^G(c) = F(h). 

The \hi\ = |c t- | are bounded. Thus there is a subsequence of the hi 
which is weakly convergent to an h' with \h'| g lim \hi\ = lim |c»-| 
= | c | =\h\ or | A ' | ^ | A | . Also \ F\ -\h,\^F{hf) = F{h) = \F\ - | A | . It 
follows that \h\ =\h'\ and F(h,) = F(h). It can be shown that this 
implies that h = h', if the space is strictly convex.32 

Thus if {d} is convergent to c, then a subsequence of their mini­
mal elements is weakly convergent to the minimal element of c. Thus 
we can choose a subsequence of the hi s which converges weakly to h 
and of these a further subsequence can be chosen so that the Thi 
approach g. Thus {h, g} is the weak limit of a subsequence of the 
{hi, Thi}. Since the graph is a closed linear set, it is weakly closed. 
Thus {h, g} is in the graph of T and Th = g. Hence T^c exists and 
equals c' and Ts$i is closed. 

APPENDIX VI 

We give here an example of a transformation, which is not associ­
ated with any absolutely bounded resolution in the sense of Lorch or 
with any bounded resolution in the sense of §8. 

For if T = f_cc/>ÇK)dEÇ\), in Lorch's notation for an absolutely 
bounded resolution, £(X), then the set %lT of zeros of T has a projec­
tion of bound K on it. This is also true if, in the sense of §8, T is asso­
ciated with a bounded resolution. Thus it will be sufficient for our 
purposes if we construct a T such that 3lT does not possess a bounded 
projection. 

Let us consider the construction given in [10, p. 152] of a manifold 
without a projection and in particular the terminology used there. 

We regard lp as a sum X) ®h#n* Let Fn be the projection of lp on the 
nth term in this sum, that is, on the lPl^. Let En be the projection of 
ZPf3» on 9Jîn. Let \ n be such that \n(Fn — EnFn) has bound 1. It can 

32 One shows that if h is such that F(h) =\F\ - \h\ and g is such that F(g) = 0 , then 
\h+g\ ^ U | . F o r | F | • |fc+g| ^\F(h+g)\ =F(h) = \F\ • | h\. Thus h and h' are mini­
mal relative to the set of g's for which F(g) = 0. Since Fiji' -h) = Fiji') - Fiji) = 0, they 
are in the same class relative to this set. For a strictly convex space this minimum 
in a class is unique. 
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readily be shown that T=^2^L0\n(Fn — EnFn) has bound 1 and that 
the zeros of T form the set $ , which has no bounded projection on it. 
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