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There are several proofs in the literature1 of M. H. Stone's theorem 
on the representation of Boolean algebras by sets [2, 4, 5, 7, 8, 9] . 
This note contains a simplified version of Stone's original proof, 
adapted to the following set, I-IV, of postulates for a Boolean algebra 
B in terms of the special element 0 and the undefined operations prod-
net ab and negation b'. It is assumed that 0 is in B, and that if a, b, 
and c are in B, then ab and b' are in B, and 

I. ab = ba. 
II . a(bc) = (ab)c. 

I I I . aa = a. 
IV. ab = a if and only if ab'=0. 

Replacing b by a in IV gives V: aa' = 0. Since a0 = a{aa') = (aa)a' =aa' 
= 0, we have VI:aO = 0. 

DEFINITIONS. A point is a set P of elements of B such that 
a. The element 0 is not in P. 
jS. If a is in P and b is in P, then ab is in P . 
y. P is maximal with respect to properties a and f3. 

The set Ra of all points P which contain a is defined to be the representa­
tive set corresponding to the element a. 

LEMMA 1. If ab is in P , then a is in P . 

PROOF. If a were not in P , then P would not be maximal, since a 
and all products pa, where p is in P , could then be added to P without 
disturbing a, since if pa = 0, then pab==0. 

LEMMA 2. If a is not equal to 0, then a is in some point P. 

PROOF. All sets of elements of B which contain a and satisfy a 
and /? form a system 5 partially ordered by set inclusion. Any linearly 
ordered subsystem L of S has an upper bound in S, namely the union 
of all members of L. Hence by Zorn's lemma [10, 11 ], there exists in S 
at least one maximal element P . 

THEOREM. The correspondence between elements a of B and their 
representative sets Ra is an isomorphism] that is, 1. Rab — Rar^Rb; 
2. R^ = C(Ra) ; 3. if Ra = Rb, thena = b. 

1 See also N. H. McCoy and D. Montgomery, Duke Mathematical Journal, vol. 3 
(1937), pp. 455-459. 
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PROOF. 1. If P is in Ra and Rb, then it is in Rab by j8. Conversely, 
if P is in Rab, it is in Ra and Rb by Lemma 1. 

2. i?a and Ra' are complementary, for if a point P is not in Ra>, 
there is an element b in P such that a'& = 0, since otherwise a ' and 
products a'p could be added to P , and P would not be maximal. 
Hence by IV, ab = b; therefore ab is in P . Then by Lemma 1, a is in P , 
and P is in Ra. On the other hand, Ra and P a ' have no common point 
P , since such a P would have to contain aa ' = 0. 

3. If a^&, then either ab'^Q or a 'ô^O, since otherwise by IV 
a = ab = b. If a&'^O, then by Lemma 2, a&' is in some point P . By 
Lemma 1, a is in P . But b is not in P , since ab'b = Q. Likewise if 
a'6 5^0, there is a point containing 6 but not a. Hence Ra^Rb-

COROLLARY. The set I - IV w an adequate postulate system for Boolean 
algebras. 

For I-IV hold in any Boolean algebra, and any algebra in which 
they hold has been shown to be isomorphic to an algebra of sets, and 
hence to a Boolean algebra. This postulate system is comparable in 
simplicity with other well known sets [l, 3, 6] . 
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