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and by the lemma and (18) for sufficiently large n 

A^^-cx+ £ \2M | h[B - ir/2n] + lk[e + ir/2n] | 

< e/2 + MO(l/n) < e, 

where ikf = m a x - ^ ^ + i | / (#) | » and this proves our theorem. 

BUDAPEST, HUNGABY 

DISCONTINUOUS CONVEX SOLUTIONS OF 
DIFFERENCE EQUATIONS1 

FRITZ JOHN 

This paper contains some conditions for continuity of convex solu­
tions of a difference equation. 

A function f(x) defined for aSx^b is convex, if 

/x+y\ ^ ƒ(*)+ƒ(?) _ 

If f(x) is convex and bounded from above in a ^ x ^ b, then f(x) is con­
tinuous (see Bernstein [l, p. 422]).2 If f(x) is convex in a^x^b and 
y a fixed number with a<y<b, let the function <j>v(x) be defined by 

(j)y(x) = lim f(y + a), 
a-*x—y 

where a assumes rational values only. Then <t>y(x) is uniquely defined, 
continuous, and convex for a<x<b (F. Bernstein [l, p. 431, Theo­
rem 7]) ; moreover (j>y{x) =f(x) for rational y — x. 

THEOREM 1. If there exists at most one continuous convex solution of 
the difference equation 

(2) F(x, ƒ(*), ƒ ( * + 1), • • • , ƒ ( * + »)) = «(*), * > 0, 

where F and g are continuous functions of their arguments, then there 
exist no discontinuous convex solutions. 

PROOF. If f(x) is a convex solution, then, for x — y rational, 

F(x, 4>v(x), 4>y(% + ! ) , - • • , <t>y(% + «)) = g(x); 

1 Presented to the Society, September 12, 1940. 
2 The numbers in brackets refer to the bibliography. 



276 FRITZ JHON [April 

as both members of this equation are continuous functions of x, it 
holds for all x>0. As there is at most one continuous convex solution, 
we have 

(j)y(x) = <i>Z(x) 

for all positive z, y, x. As (j>z(z)=f(z), we see that ƒ(z) is identical 
with the continuous function 4>y(z) for all positive z. 

THEOREM 2. If the difference equation (2) has at most one solution, 
which is monotone f or sufficiently large x, then (2) has at most one convex 
solution, and that solution will be continuous. 

PROOF. Every continuous convex solution is monotone for suffi­
ciently large x. Apply Theorem 1. 

THEOREM 3. A difference equation of the form 

n 

(3) I I (A* + *))•» = g(x), x>0, 
fc=0 

(ah real constants) has at most one convex solution, if 
(1) all roots of the equation 

n 

X) akx
k = 0 

/e=0 

are sithple and of absolute value 1, 

n 

an> 0, Yjak^ 0, 

(2) g(x) 7^0 and continuous, 
(3) linWoo (log \g(x)\)/x = 0, 
(4) lima;̂ 00 (log \g(x) I )/log x9^kak. 

PROOF. Assumption (3) implies 

ni/(*+*)i a* = U(*)i. 
From assumption (1) above and the lemma proved below, it follows 
that there are non-negative constants bi and cr, such that 

n 1 «(*+1) \bi = n f" n i /(* + * + o hl ' 
-nu*+01*. 
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For every continuous convex solution ƒ (x) of (3), \f(x) | is either mon­
otone non-decreasing or monotone decreasing for sufficiently large x. 
Which of these alternatives takes place is determined by g(x), as in 
the first case 

nu(*+oh 
i 

is monotone non-decreasing, and in the second case monotone de­
creasing for sufficiently large x. If |fix) | is monotone non-decreasing, 
we have in F(x) =log \f(x) | a non-decreasing solution of the equation 

X ^F{x + k) = log | g(x) | . 
k 

It follows from our assumptions that such a solution F(x) is uniquely 
determined for all sufficiently large x, and hence for all x (John [3, 
p. 183]). If | f(x) | is monotone decreasing for sufficiently large x, then 
F(x) = -log \f(x)\ is an increasing solution of 

X) akF(x + k) = - log | g(x) |, 
k 

and hence uniquely determined. Thus for any continuous convex solu­
t ion/(x) of (3), \f{x)\ is uniquely determined. Then ƒ(x) is uniquely 
determined as well, unless ƒ(x) is linear for sufficiently large x; but if 
f(x) is linear for large x, 

,. log | g(x) | log \f(x + k) | 
i i m — — — \im 2^ ak = 2^ ak 
a:-*» l o g X Z-+00 ft l o g X A-

contrary to assumption. Thus there exists at most one continuous 
convex solution, and hence at most one convex solution. 

Example. The equation 

f(x + 1) • ƒ (» = x-*, x > 0, p > 0, 

satisfies the assumptions of Theorem 3 and hence has at most one 
convex solution (proved by A. E. Meyer [4] for p = ly for generalp 
by H. P. Thielman [5]). The convex solution is found to be 

LEMMA. If <j>(x) =^2l=,0akx
k is a polynomial, such that 

(1) an>0, 
(2) <j>{x) has no positive real roots, 

then there are polynomials \[/(x) and a(x) with non-negative coefficients, 
such that 

<j>(x)'\[/(x) = a(x). 
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PROOF. 0(a) can be factored in the form 

0(a) = önII (a + ai)TL (°°2 + 2P*X + 7*) 
l k 

where a ^ O , jk>fil> Hence it is sufficient to prove the lemma for the 
case that 

0(a) = x2 + 20x + 7 

and ]82 < 7. We define 0 with 0 < 0 < TT by 

cos 0 = - /V71/2. 

Let the non-negative integer s be determined by 

7T 7T 

^ B < 
s + 2 s+l 

Put 
(7i/2).+2 s i n (s + ! ) ö _ ^(7i/2)s+i s i n (5 + 2)0 + a*+2 sin 0 

= Z(T1/2)^ 

[a2 + 20a + 7]-sin0 

sin (ft + 1)0 
— — — — — — — — - -Vs—& 

sin 0 

^(a) and (x2 + 2]8x+7) -^(a) obviously are polynomials with non-neg­
ative coefficients. 

THEOREM 4. The difference equation 

n 

(4) X) a*/0 + k) = g(a), * > 0, 
A?=-0 

Âas wo discontinuous convex solutions, if 
(a) g (a) w bounded from above in every positive interval, 
(b) an>0y 

(c) tóe equation y££.0akXk = 0 has no positive real roots. 

PROOF. Let 0(a) =^2l=0akx
k. Let \f/(x) be a polynomial, such that 

\f/(x) and 0(a) -^(a) have no negative coefficients. Let 

0(a)-^(a) = a5-o-(a), 

where <r(a) is a polynomial of degree m with OT(0)T^0. Then 

( J \ 2m 
) = ]C C*#* 

a / k=o 
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is a polynomial of degree 2m wi th C/c = C2m-&^0. P u t 

r(x) = \p(x)'Xma( — ) = X brx
r. 

\X/ r 

Then 
2m 

4>{X)-T(X) — Xs^2 CkXky 

where T(X) is a polynomial with non-negative coefficients br and 
^ = ^2m-A;^0. For a convex solution ƒ(x) of (4) 

2m 

X brg(x + r) = X ckf(x + k + s) 
r k=0 

•[ 2m 

= — X Ok [ƒ0 + k + s) + f{x + 2m - k + s) J 
2 &=o 
*[ 2m 

â X c*/(* + S + *»)> 
2 /c=o 

or 
2^2rbrg(x + 0 

/(x + s + m) ^ = 
/ skCje 

As g(x) is bounded above, it follows that ƒ(x) is bounded above, and 
hence continuous. 

THEOREM 5. If the difference equation 

n 

(5) X akf(% + k) = g{x) 
0=/b 

has a continuous convex solution, and if the equation X*=oafc#fc = 0 has a 
positive real root, then the difference equation has discontinuous convex 
solutions as well. 

PROOF. It is sufficient to prove that the equation 

n 

X akf(% + k) = 0 
k=Q 

has a discontinuous convex solution, as the sum of two convex func­
tions is again convex. Let 

n n— 1 

X VkXk = O — X) X bk%k, 
&=>0 fc=0 
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where \ > 0 . Then 

E Okftx + k) = E h[f(x + k + 1) - \f(x + ft)]. 

I t is sufficient to show that the equation 

(6) f(x + 1) - X/(*) = 0 

has a discontinuous convex solution. 
Let S be a basis for all real numbers; that is, every real x may be 

represented in one and only one way in the form 

x = aa + fib + • • • + yc, 

where a, & , • • • , c are in 2, and a, /3, • • • , y are rational numbers. 
(The existence of such a base is proved by Hamel [2].) Without re­
striction of generality we may assume 1 to be an element of 2 (this 
comes back to assuming a normal ordering of the set of real numbers 
with 1 as first element). For every real x, there is then uniquely de­
termined a number a, such that 

x = a-1 + @b + • • • + yc, 

where a, |8, • • • , y are rational, and 1, & , • • • , c are in 2 . If X ^ l , 
define f(x) by Xa. Then 

f(x + 1) - \f(x) = X*+1 - XX* = 0. 

If y = a'l-\-(i'b-{- • • • +y'c is the representation of y then 

(x +y\ X« + X«' ƒ (a) + f(y) 

Hence ƒ (x) is a convex solution of (6). f(x) is discontinuous in every 
interval, as for an element 6 ^ 1 of 2 

/o») = i 
for all rational /3, whereas 

ƒ(«) = \« ^ 1 

for all rational a^O. Similarly, if X = l, we define /(x)==j8, where (3 
is the coefficient of the fixed element b^l of 2 . Then 

ƒ(* + 1) - /(as) «s 0, ƒ ( — — j a , 

/ (a) = 0 for all rational a, but ƒ(j8J) = /3^0 for all rational /MO. 
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Note added March 15: I am indebted to Professors 0 . Szâsz and 
G. Szegö for the information that the Lemma had been proved by 
E. Meissner, Mathematische Annalen, vol. 70 (1911), pp. 223-235. 
See also Pólya and Szegö, Aufgaben und Lehrsatze aus der Analysis, 
vol. 2, p. 730, no. 190. 
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