
ABELIAN GROUPS THAT ARE DIRECT SUMMANDS OF 
EVERY CONTAINING ABELIAN GROUP1 

REINHOLD BAER 

It is a well known theorem that an abelian group G satisfying 
G = nG for every positive integer n is a direct summand of every 
abelian group H which contains G as a subgroup. It is the object of 
this note to generalize this theorem to abelian groups admitting a 
ring of operators, and to show that the corresponding conditions are 
not only sufficient but are at the same time necessary. Finally we 
show that every abelian group admitting a ring of operators may be 
imbedded in a group with the above mentioned properties; and it is 
possible to choose this "completion" of the given group in such a way 
that it is isomorphic to a subgroup of every other completion. 

Our investigation is concerned with abelian groups admitting a ring 
of operators. A ring R is an abelian group with regard to addition, 
its multiplication is associative, and the two operations are connected 
by the distributive laws. As the multiplication in R need not be com­
mutative, we ought to distinguish left-, right- and two-sided ideals. 
Since, however, only left-ideals will occur in the future, we may use 
the term "ideals" without fear of confusion. Thus an ideal in R is a 
non-vacuous set M of elements in R with the property : 

If m', m" are elements in M, and if r', r " are elements in R, then 
r'm'±r"m" is an element in M. 

An abelian group G whose composition is written as addition is 
said to admit the elements in the ring R as operators (or shorter: 
G is an abelian group over R), if with every element r in R and g in G 
is connected their uniquely determined product rg so that this prod­
uct is an element in G and so that this multiplication satisfies the as­
sociative and distributive laws. If G is an abelian group over R, then 
its subgroups M are characterized by the same property as the ideals 
MinR. 

We assume finally the existence of an element 1 in R so that g = lg 
for every g in G and r • 1 = 1 • r = r for every r in R. 

If x is any element in the abelian group G over Ry then its order 
N(x) consists of all the elements r in R which satisfy nc = 0. One 
verifies that every order N(x) is an ideal in 2?, and that N(x) =R if, 
and only if, x = 0. 

If M is an ideal in R, and if x is an element in G, then a subgroup 

1 Presented to the Society, February 24, 1940. 
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of G is formed by the elements mx for m in M; and this subgroup may 
be denoted by Mx. (It is a subgroup of the cyclic group generated 
by x.) The correspondence between the element mm M and the ele­
ment mx in Mx is a special case of the homomorphisms of M into G. 
Here a homomorphism <f> of the ideal M in R into the abelian group G 
over R is defined as a single-valued function w* of the elements m 
in M with values in G which satisfies 

(r'm' ± r"m")+ = r'(w'*) ± r"(w"*) 

for ra', m" in M and r', r" in i£. 
We are now ready to state and prove our main result.2 

THEOREM 1. The following two properties of an abelian group G over 
the ring R are each a consequence of the other. 

(a) If G is a subgroup of the abelian group H over R, then G is a 
direct summand of H. 

(b) To every ideal M in R and to every homomorphism <j> of M into 
G there exists some element v in G so that m<l> = mv for every m in M. 

PROOF. Assume first that (a) is satisfied by G. If M is an ideal in R, 
and if 0 is a homomorphism of M into G, then there exists one and 
essentially only one group H over R which is generated in adjoining 
to G an element h, subject to the relations 

mh = m* for every m in M. 

It is a consequence of (a) that H is the direct sum of G and of a suit­
able subgroup K of H so that every element in H may be represented 
in one and only one way in the form: g+k for g in G and k in K. 
This applies in particular to the element h so that h = v+w for 

2 The following is a remark by the referee: "It is perhaps of some interest to ob­
serve that Theorem 1 contains a generalization of the theorem that every representa­
tion of a semisimple algebra is fully reducible. Indeed, how does one characterize 
those rings R such that every abelian group G admitting R as an operator ring has the 
property (a)? The answer is that every left-ideal in R must be generated by an idem-
potent element, and this is equivalent to saying that R is semisimple (both chain 
conditions and no radical). 

"The sufficiency of this condition is proved by showing that G has the property (b). 
Let m—*wft be any homomorphism of a left-ideal M of R into G, Since M — Re with 
c2 = e, then me —m for every m in M, and if we take v — e* we have nft = (me)^ = me* 
= mv. 

"The necessity is proved by observing that every left-ideal M of R is itself an 
abelian group over R, and is a subgroup of R. Hence to each M there exists a com­
plementary left-ideal N. From 1 =e-\-e' with unique e in M, e' in N, one concludes 
in the usual way that e2*=e and M *=Re" 
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uniquely determined elements v and w in G and K respectively. Then 
m<f> = mh = mv+mw is for every element m in M an element in G, and 
so is mv and rnt — niv — niw. Since mw is an element in K, it follows 
that mw = 0 or m<t> = mv for every m in M; and this shows that (b) 
is a consequence of (a). 

Assume now conversely that (b) is satisfied by the abelian group G 
over R, and that G is a subgroup of the abelian group H over R. Then 
there exists a greatest subgroup K of H whose meet with G is 0. The 
subgroup S of H which is generated by G and K is their direct sum; 
and hence it suffices to prove that H=S = G-\-K. 

If S^H, then there exists in H an element w that is not contained 
in S. The coset W=S-{-w is an element in the quotient-group H/S 
and its order N(W) is an ideal in R. If m is any element in N(W)y 

then mw is an element in 5 ; and it follows from the construction of S 
that there exist uniquely determined elements g(m) and k(m) in G 
and K respectively so that 

mw = g(m) + k(m) for m in N(W). 

Thus a homomorphism of N{W) into G is defined in mapping the ele­
ment m in N{W) upon the element g(m) in G. There exists therefore 
by condition (b) an element v in G so that mv = g(m) for every m in 
iV(TF). The element w' = w — v consequently satisfies 

S+w' = S + w=W 

and 

mwf = &(w) 

for every element m in N(W). Since w is not an element in 5, neither 
is w'. Since ÜT is a greatest subgroup of H whose meet with G is 0, 
and since w' is not an element in S and therefore not in K, adjoining 
w' to K generates a subgroup whose meet with G is different from 0. 
Hence there exists an element k in K, and an element r in R so that 

k + rw' = g 9e 0 

is an element in G. Since rw' =g — k is an element in 5, it follows that r 
is an element in N(W) so that g = k-\-k(r) is an element in the meet 
of G and K. This contradicts, however, the construction of K and 
the choice of g. Our hypothesis S^H has thus led us to a contradic­
tion; and this completes the proof. 

If M is an ideal in the ring R> and if G is an abelian group over R, 
then G is termed M-complete, if there exists to every homomorphism <f> 
of M into G an element v in G so that m^^mv for every m in M. In 
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this terminology, condition (b) of Theorem 1 states that G is M -com­
plete for every ideal M in R. I t is our object to characterize the 
Af-complete groups, provided M is a principal ideal. For this end we 
need several notations. 

If M is an ideal in R, then denote by GM the set of all the elements 
g in G which satisfy mg = 0 for every m in M. Note that G M need not 
be a subgroup of the abelian group G over R} though it is closed with 
regard to addition and subtraction. 

If p is any element in R, then pG consists of all the elements pg 
for g in G. Note again that pG need not be a subgroup of the abelian 
group G over R. 

The principal ideal in R, generated by the element p in R, consists 
of all the elements rp for r in R and may therefore be denoted by Rp; 
and N(p) consists of all the elements r in R so that rp = Q. N{p) is 
clearly an ideal in R. 

THEOREM 2. The abelian group G over R is Rp-complete if and only 
ifGN(p)^pG. 

PROOF. Suppose first that G is i n c o m p l e t e . If x is an element in 
GN(P)J then r'p = r"p implies r'x = r"x, since the first equation is 
equivalent to the fact that rf—rn is an element in N(p). Thus a 
homomorphism of Rp into G is defined in mapping rp upon rx. Since G 
is ^ - c o m p l e t e , there exists an element v in G so that rpv^rx for 
every r in R. This implies in particular that pv = x, that is, our condi­
tion is necessary. 

Suppose conversely that our condition be satisfied by G. If <j> is a 
homomorphism of Rp into G, then p* is an element in GN(P)9 since 
we have r(p+) = (r£)* = 0 for elements r in N(p). Hence there exists an 
element gin G so that pt — pq; and clearly (rp)(f> = r(p<f>) = r(pq) = (rp)q 
for every r in R so that G is i n c o m p l e t e . 

COROLLARY 1. If p is an element in R so that N(p) = 0, then G = pG 
is a necessary and sufficient condition for Rp-completeness of the abelian 
group G over R. 

This is a consequence of Theorem 2, since GQ = G. 

COROLLARY 2. If N(p) = 0 for every element p 5*0 in the ring R, and 
if every ideal in R is a principal ideal Rpy then G = pG for every py^O 
in Ris a necessary and sufficient condition for the abelian group G over 
R to be a direct summand of every abelian group H over R which con­
tains G as a subgroup. 

This is an obvious consequence of Theorem 1 and Corollary 1. 
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If, in particular, R consists of the rational integers, then the hy­
potheses of Corollary 2 are satisfied. In this case the sufficiency of 
the condition of the Corollary 2 has been known for a long time.3 

An abelian group G over the ring R is termed complete, if it is 
ikf-complete for every ideal M in R. Thus the complete groups are 
just the groups satisfying the properties (a) and (b) of Theorem 1. 

THEOREM 3. Every abelian group over the ring R is a subgroup of a 
complete abelian group over the ring R. 

PROOF. If G is an abelian group over the ring R, M an ideal in i?, 
and (/> a homomorphism of M into G, then there exists an abelian 
group H over R which contains G as a subgroup and which contains 
an element x so that mx = m* for every m in M. 

By repetition of the construction of the preceding paragraph one 
may show that if G is an abelian group over the ring R, then there 
exists an abelian group G' over the ring R which contains G as a sub­
group and which satisfies the following condition : 

(3.1) If Mis an ideal in R, and if <t> is a homomorphism of M into G, 
then there exists an element v in G' so that mv = m* for every m in M. 

Denote now by X an ordinal number which is a limit-ordinal and 
whose cardinal number is greater than the number of elements in R. 
Then it follows from the second paragraph of the proof that there 
exists for every ordinal v with O ^ P ^ A an abelian group G„ over R 
with the following properties: 

(i) Go = G; 
(ii) G„^GM for v<\x\ 
(iii) G„ is for limit-ordinals v the set of all the elements contained 

in groups GM f or \x < v ; 
(iv) Gv and G„+i satisfy condition (3.1). 
Suppose now that M is an ideal in R and that 0 is a homomorphism 

of M into H = G\. Then there exists an ordinal a<\ so that Ga con­
tains all the elements m*\ and there exists therefore an element v in 
G<r+i so that mv~m* for every m. H is therefore complete. 

THEOREM 4. To every subgroup G of the complete abelian group K over 
the ring R there exists a complete subgroup G* of K which contains G 
as a subgroup and which satisfies the following condition : 

(E) Every isomorphism of G upon a subgroup of a complete abelian 
group H over R is induced by an isomorphism of G* upon a subgroup 
ofH. 

8 For a comparable proof see Annals of Mathematics, (2), vol. 37 (1936), pp. 766-
767, (1; 1). 
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PROOF. If T is an abelian group over the ring R> if M is an ideal in 
R, then the homomorphism 0 of M into T is termed reducible in JH, 
if there exists an ideal M' in R and a homomorphism 0 ' of M' into T 
so that M<Mf and so that 0 and 0 ' coincide on M. If 0 is not reduci­
ble, then it is irreducible in T. 

(4.1) The abelian group T over the ring R is complete, if there exists 
to every ideal M in R and to every irreducible homomorphism 0 of M 
into T an element v in T so that mv = m* for every m in M. 

To prove this statement let J be an ideal in R and y a homomor­
phism of J into T. Then there exists a greatest ideal M in R so that 
J^M and so that y is induced in J by a homomorphism 0 of M 
into T. I t is clear that 0 is irreducible in T. Hence there exists an ele­
ment v in T so that mv = m* for every m in M. This implies however 
that nv = n<f> = ny for every n in ƒ, that is, T is complete. 

I t is a consequence of (4.1) and of the completeness of K that there 
exists an ascending chain of subgroups G„ for 0 ^ v :gX with the follow­
ing properties: 

(i) G = G0; 
(ii) Gv^Kiorv^K\ 
(iii) G„+i is generated by adjoining to Gv an element gv with the 

following properties : 
(iiir) The homomorphism of N(Gv+gv) into Gv which is defined by 

mapping the element m in N(Gv+gv) upon the element mgv in Gv is 
irreducible in Gv. 

(iii")4 Gv does not contain any element x so that mx = mgv for every 
m in N(Gv+gv). 

(iv) G„ is for limit-ordinals v the set of all the elements contained 
in groups G> for fx < v. 

(v) G\ = G* is complete. 
We are now going to prove that this subgroup G* of K satisfies con­

dition (E). Thus assume that p is an isomorphism of G upon the sub­
group G' = Gp of the complete group H. We are going to construct 
subgroups Gi of H and isomorphisms p„ of G„ upon Gi with the fol­
lowing properties: 

(1) G' = Go',p = Po; 
(2) Gi SG; f o r ^ / x ; 
(3) p„ and pM coincide on Gv for v^\x. 

In order to prove the possibility of this construction it suffices to show 
the existence of G/+i, p„+i under the hypothesis of the existence of 
Gv , pp. 

4 This condition (iii") is not really needed for the proof, though it is convenient 
for the construction of the chain Gv. 
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A homomorphism irreducible in Gi of M = N(Gv+gv) into Gi is 
defined by mapping the element min M upon the element m* = (mgv)

p». 
Since H is complete, there exists an element h in H so that m<f> = mh 
for every m in M. If M, = N(Gi +h), then it is clear that M£M'. 
If m is in M', then wfe is an element in Gi. Thus a homomorphism 7 
of M' into G„ is defined by mapping the element m in M' upon the 
element my = {mh)p~v. If, in particular, m is an element in M, then 
my = mgv; and it follows from (iii') that M=M'. Suppose now that 
g' is an element in Gi and u an element in R so that g'+uh = 0. Then 
& is an element in M=M' and it follows from the above considera­
tions that —g' = uh = uypv = (ugv)

p>>. Hence there exists one and only 
one isomorphism p„+i of G„+i upon the group G/+i, generated by Gi 
and h, which isomorphism induces p„ in Gv and maps gv upon h. 

Thus there exists finally an isomorphism p\ of G* = G\ upon G\' 
which induces p in G; and this completes the proof. 

COROLLARY. Assume that Kis a smallest complete abelian group over 
the ring R containing the subgroups d. Then Gi and G2 are isomorphic 
iff and only if, there exists an automorphism of K mapping G\ upon G2. 

This is an obvious consequence of Theorem 4. I t should be noted, 
however, that the complete group G*, satisfying (E) and containing 
G, whose existence is assured by Theorems 3 and 4, is only "essen­
tially smallest," but need not be "actually smallest." 
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