ABELIAN GROUPS THAT ARE DIRECT SUMMANDS OF
EVERY CONTAINING ABELIAN GROUP!

REINHOLD BAER

It is a well known theorem that an abelian group G satisfying
G=nG for every positive integer # is a direct summand of every
abelian group H which contains G as a subgroup. It is the object of
this note to generalize this theorem to abelian groups admitting a
ring of operators, and to show that the corresponding conditions are
not only sufficient but are at the same time necessary. Finally we
show that every abelian group admitting a ring of operators may be
imbedded in a group with the above mentioned properties; and it is
possible to choose this “completion” of the given group in such a way
that it is isomorphic to a subgroup of every other completion.

Our investigation is concerned with abelian groups admitting a ring
of operators. A ring R is an abelian group with regard to addition,
its multiplication is associative, and the two operations are connected
by the distributive laws. As the multiplication in R need not be com-
mutative, we ought to distinguish left-, right- and two-sided ideals.
Since, however, only left-ideals will occur in the future, we may use
the term “ideals” without fear of confusion. Thus an ideal in R is a
non-vacuous set M of elements in R with the property:

If m’, m’’ are elements in M, and if 7/, '’ are elements in R, then
r'm’+r''m’ is an element in M.

An abelian group G whose composition is written as addition is
said to admit the elements in the ring R as operators (or shorter:
G is an abelian group over R), if with every element 7 in Rand gin G
is connected their uniquely determined product rg so that this prod-
uct is an element in G and so that this multiplication satisfies the as-
sociative and distributive laws. If G is an abelian group over R, then
its subgroups M are characterized by the same property as the ideals
M in R.

We assume finally the existence of an element 1 in R so that g=1g
forevery gin Gandr-1=1-r=rfor every rin R.

If x is any element in the abelian group G over R, then its order
N(x) consists of all the elements 7 in R which satisfy rx=0. One
verifies that every order N(x) is an ideal in R, and that N(x) =R if,
and only if, x =0.

If M is an ideal in R, and if x is an element in G, then a subgroup

1 Presented to the Society, February 24, 1940.
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ABELIAN GROUPS AS DIRECT SUMMANDS 801

of G is formed by the elements mx for m in M; and this subgroup may
be denoted by Mx. (It is a subgroup of the cyclic group generated
by x.) The correspondence between the element m in M and the ele-
ment mx in Mx is a special case of the homomorphisms of M into G.
Here a homomorphism ¢ of the ideal M in R into the abelian group G
over R is defined as a single-valued function m? of the elementsm
in M with values in G which satisfies

(r'm’ + r'm'’)¢ = r'(m’¢) + r//(,m//,;,)

for m’, m'' in M and 7, '’ in R.
We are now ready to state and prove our main result.?

TuEOREM 1. The following two properties of an abelian group G over
the ring R are each a consequence of the other.

(a) If G is a subgroup of the abelian group H over R, then G is a
direct summand of H.

(b) To every ideal M in R and to every homomorphism ¢ of M into
G there exists some element v in G so that m® =mv for every m in M.

Proor. Assume first that (a) is satisfied by G. If M is an ideal in R,
and if ¢ is a homomorphism of M into G, then there exists one and
essentially only one group H over R which is generated in adjoining
to G an element %, subject to the relations

mh = m?* for every m in M.

It is a consequence of (a) that H is the direct sum of G and of a suit-
able subgroup K of H so that every element in H may be represented
in one and only one way in the form: g4k for g in G and % in K.
This applies in particular to the element % so that A=v+w for

2 The following is a remark by the referee: “It is perhaps of some interest to ob-
serve that Theorem 1 contains a generalization of the theorem that every representa-
tion of a semisimple algebra is fully reducible. Indeed, how does one characterize
those rings R such that every abelian group G admitting R as an operator ring has the
property (a)? The answer is that every left-ideal in R must be generated by an idem-
potent element, and this is equivalent to saying that R is semisimple (both chain
conditions and no radical).

“The sufficiency of this condition is proved by showing that G has the property (b).
Let m—m® be any homomorphism of a left-ideal M of R into G. Since M = Re with
e*=e, then me=m for every m in M, and if we take v=¢® we have m? = (me)? =me?®
=my.

“The necessity is proved by observing that every left-ideal M of R is itself an
abelian group over R, and is a subgroup of R. Hence to each M there exists a com-
plementary left-ideal N. From 1=e¢+¢’ with unique ¢ in M, ¢’ in N, one concludes
in the usual way that e2=¢ and M =Re.”
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uniquely determined elements v and w in G and K respectively. Then
m?® =mh =mv-+mw is for every element m in M an element in G, and
so is mv and m® —mv=mw. Since mw is an element in K, it follows
that mw=0 or m*=mv for every m in M; and this shows that (b)
is a consequence of (a).

Assume now conversely that (b) is satisfied by the abelian group G
over R, and that G is a subgroup of the abelian group H over R. Then
there exists a greatest subgroup K of H whose meet with G is 0. The
subgroup .S of H which is generated by G and K is their direct sum;
and hence it suffices to prove that H=S=G+K.

If S H, then there exists in H an element w that is not contained
in S. The coset W=.S+w is an element in the quotient-group H/S
and its order N(W) is an ideal in R. If m is any element in N(W),
then mw is an element in .S; and it follows from the construction of S
that there exist uniquely determined elements g(m) and k(m) in G
and K respectively so that

mw = g(m) + k(m) for m in N(W).

Thus a homomorphism of N(W) into G is defined in mapping the ele-
ment m in N(W) upon the element g(m) in G. There exists therefore
by condition (b) an element v in G so that mv=g(m) for every m in
N(W). The element w’ =w —v consequently satisfies

S+w=S+w=Ww
and
mw' = k(m)

for every element m in N(W). Since w is not an element in S, neither
is w’. Since K is a greatest subgroup of H whose meet with G is 0,
and since w’ is not an element in S and therefore not in K, adjoining
w’ to K generates a subgroup whose meet with G is different from 0.
Hence there exists an element £ in K, and an element 7 in R so that

E+rw =g#0

is an element in G. Since rw’ =g —*k is an element in S, it follows that »
is an element in N(W) so that g=k-k(7) is an element in the meet
of G and K. This contradicts, however, the construction of K and
the choice of g. Our hypothesis S H has thus led us to a contradic-
tion; and this completes the proof.

If M is an ideal in the ring R, and if G is an abelian group over R,
then G is termed M-complete, if there exists to every homomorphism ¢
of M into G an element v in G so that m® =mv for every m in M. In
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this terminology, condition (b) of Theorem 1 states that G is M-com-
plete for every ideal M in R. It is our object to characterize the
M-complete groups, provided M is a principal ideal. For this end we
need several notations.

If M is an ideal in R, then denote by G the set of all the elements
g in G which satisfy mg =0 for every m in M. Note that Gy need not
be a subgroup of the abelian group G over R, though it is closed with
regard to addition and subtraction.

If p is any element in R, then pG consists of all the elements pg
for g in G. Note again that pG need not be a subgroup of the abelian
group G over R.

The principal ideal in R, generated by the element p in R, consists
of all the elements 7p for r in R and may therefore be denoted by Rp;
and N(p) consists of all the elements 7 in R so that rp=0. N(p) is
clearly an ideal in R.

THEOREM 2. The abelian group G over R is Rp-complete if and only
‘if GN(p) =< PG

ProoF. Suppose first that G is Rp-complete. If x is an element in
Gn), then #'p=r""p implies r'x=r""x, since the first equation is
equivalent to the fact that #’—7’/ is an element in N(p). Thus a
homomorphism of Rp into G is defined in mapping 7p upon rx. Since G
is Rp-complete, there exists an element v in G so that rpv=rx for
every 7 in R. This implies in particular that pv=x, that is, our condi-
tion is necessary.

Suppose conversely that our condition be satisfied by G. If ¢ is a
homomorphism of Rp into G, then p* is an element in Gy(y), since
we have 7(p?) = (rp)¢ =0 for elements 7 in N(p). Hence there exists an
element ¢ in G so that p¢ =pq; and clearly (rp)¢ =r(p?) =r(pq) = (rp)q
for every 7 in R so that G is Rp-complete.

COROLLARY 1. If p is an element in R so that N(p) =0, then G=pG
is a necessary and sufficient condition for Rp-completeness of the abelian
group G over R.

This is a consequence of Theorem 2, since G,=G.

COROLLARY 2. If N(p) =0 for every element p #0 in the ring R, and
if every ideal in R is a principal ideal Rp, then G =pG for every p%0
in R is a necessary and sufficient condition for the abelian group G over
R to be a direct summand of every abelian group H over R which con-
tains G as a subgroup.

This is an obvious consequence of Theorem 1 and Corollary 1.
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If, in particular, R consists of the rational integers, then the hy-
potheses of Corollary 2 are satisfied. In this case the sufficiency of
the condition of the Corollary 2 has been known for a long time.?

An abelian group G over the ring R is termed complete, if it is
M-complete for every ideal M in R. Thus the complete groups are
just the groups satisfying the properties (a) and (b) of Theorem 1.

THEOREM 3. Every abelian group over the ring R is a subgroup of a
complete abelian group over the ring R.

Proor. If G is an abelian group over the ring R, M an ideal in R,
and ¢ a homomorphism of M into G, then there exists an abelian
group H over R which contains G as a subgroup and which contains
an element x so that mx =m? for every m in M.

By repetition of the construction of the preceding paragraph one
may show that if G is an abelian group over the ring R, then there
exists an abelian group G’ over the ring R which contains G as a sub-
group and which satisfies the following condition:

(3.1) If M is anideal in R, and if ¢ is a homomorphism of M into G,
then there exists an element v in G’ so that mv=m? for every m in M.

Denote now by N an ordinal number which is a limit-ordinal and
whose cardinal number is greater than the number of elements in R.
Then it follows from the second paragraph of the proof that there
exists for every ordinal » with 0 =» =\ an abelian group G, over R
with the following properties:

(i) Go=G;

(i) G, =G forv<p;

(iii) G, is for limit-ordinals » the set of all the elements contained
in groups G, for u <v;

(iv) G, and G, satisfy condition (3.1).

Suppose now that M is an ideal in R and that ¢ is a homomorphism
of M into H=G\. Then there exists an ordinal ¢ <\ so that G, con-
tains all the elements m?; and there exists therefore an element v in
Go41 so that mv=m? for every m. H is therefore complete.

THEOREM 4. To every subgroup G of the complete abelian group K over
the ring R there exists a complete subgroup G* of K which contains G
as a subgroup and which satisfies the following condition:

(E) Every isomorphism of G upon a subgroup of a complete abelian
group H over R is induced by an isomorphism of G* upon a subgroup
of H.

3 For a comparable proof see Annals of Mathematics, (2), vol. 37 (1936), pp. 766—
767, (1;1).
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Proor. If T is an abelian group over the ring R, if M is an ideal in
R, then the homomorphism ¢ of M into T is termed reducible in T,
if there exists an ideal M’ in R and a homomorphism ¢’ of M’ into T
so that M < M’ and so that ¢ and ¢’ coincide on M. If ¢ is not reduci-
ble, then it is irreducible in 7.

(4.1) The abelian group T over the ring R is complete, if there exists
to every ideal M in R and to every irreducible homomorphism ¢ of M
into T an element v in T so that mv=m® for every m in M.

To prove this statement let J be an ideal in R and v a homomor-
phism of J into T. Then there exists a greatest ideal M in R so that
J=M and so that v is induced in J by a homomorphism ¢ of M
into T It is clear that ¢ is irreducible in 7. Hence there exists an ele-
ment v in T so that mv=m¢* for every m in M. This implies however
that nv=n®=n" for every » in J, that is, T is complete.

It is a consequence of (4.1) and of the completeness of K that there
exists an ascending chain of subgroups G, for 0 <» <\ with the follow-
ing properties:

(i) G=Gy;

(ii) G, =K forv =\;

(iii) G,41 is generated by adjoining to G, an element g, with the
following properties:

(iii”) The homomorphism of N(G,-+g,) into G, which is defined by
mapping the element m in N(G,4+g,) upon the element mg, in G, is
irreducible in G,.

(iii’’)* G, does not contain any element x so that mx =mg, for every
m in N(Gy'l"gv)

(iv) G, is for limit-ordinals » the set of all the elements contained
in groups G, for u<w.

(v) Gr=G* is complete.

We are now going to prove that this subgroup G* of K satisfies con-
dition (E). Thus assume that p is an isomorphism of G upon the sub-
group G’ =G* of the complete group H. We are going to construct
subgroups G, of H and isomorphisms p, of G, upon G, with the fol-
lowing properties:

(1) G'=G{, p=po;

(2) G} =G/ forv=y;

(3) pv and p, coincide on G, for v =p.

In order to prove the possibility of this construction it suffices to show
the existence of G/,1, p,+1 under the hypothesis of the existence of
G/, ps.

¢ This condition (iii’’) is not really needed for the proof, though it is convenient
for the construction of the chain G,.
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A homomorphism irreducible in G; of M =N(G,+g,) into G, is
defined by mappingthe element m in M upon the element m?¢ = (mg,) #.
Since H is complete, there exists an element % in H so that m¢=mh
for every m in M. If M'=N(G,) +h), then it is clear that M < M'.
If m is in M’, then mh is an element in G, . Thus a homomorphism
of M’ into G, is defined by mapping the element m in M’ upon the
element mY= (mh)?'. If, in particular, m is an element in M, then
m?Y=mg,; and it follows from (iii’) that M = M’. Suppose now that
g’ is an element in G/ and « an element in R so that g’4+uk=0. Then
u is an element in M = M’ and it follows from the above considera-
tions that —g’=uh=u" = (ug,)?». Hence there exists one and only
one isomorphism p,41 of G,;1 upon the group G/, generated by G/
and %, which isomorphism induces p, in G, and maps g, upon .

Thus there exists finally an isomorphism p) of G*=G, upon GY
which induces p in G; and this completes the proof.

COROLLARY. Assume that K is a smallest complete abelian group over
the ring R containing the subgroups G;. Then Gy and G, are isomorphic
if, and only if, there exists an automorphism of K mapping Gy upon Go.

This is an obvious consequence of Theorem 4. It should be noted,
however, that the complete group G*, satisfying (E) and containing
G, whose existence is assured by Theorems 3 and 4, is only “essen-
tially smallest,” but need not be “actually smallest.”
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