ABELIAN GROUPS THAT ARE DIRECT SUMMANDS OF EVERY CONTAINING ABELIAN GROUP¹

REINHOLD BAER

It is a well known theorem that an abelian group G satisfying G = nG for every positive integer n is a direct summand of every abelian group H which contains G as a subgroup. It is the object of this note to generalize this theorem to abelian groups admitting a ring of operators, and to show that the corresponding conditions are not only sufficient but are at the same time necessary. Finally we show that every abelian group admitting a ring of operators may be imbedded in a group with the above mentioned properties; and it is possible to choose this "completion" of the given group in such a way that it is isomorphic to a subgroup of every other completion.

Our investigation is concerned with abelian groups admitting a ring of operators. A ring R is an abelian group with regard to addition, its multiplication is associative, and the two operations are connected by the distributive laws. As the multiplication in R need not be commutative, we ought to distinguish left-, right- and two-sided ideals. Since, however, only left-ideals will occur in the future, we may use the term "ideals" without fear of confusion. Thus an ideal in R is a non-vacuous set M of elements in R with the property:

If m', m'' are elements in M, and if r', r'' are elements in R, then $r'm' \pm r''m''$ is an element in M.

An abelian group G whose composition is written as addition is said to admit the elements in the ring R as operators (or shorter: G is an abelian group over R), if with every element r in R and g in G is connected their uniquely determined product rg so that this product is an element in G and so that this multiplication satisfies the associative and distributive laws. If G is an abelian group over R, then its subgroups M are characterized by the same property as the ideals M in R.

We assume finally the existence of an element 1 in R so that g = 1g for every g in G and $r \cdot 1 = 1 \cdot r = r$ for every r in R.

If x is any element in the abelian group G over R, then its order N(x) consists of all the elements r in R which satisfy rx = 0. One verifies that every order N(x) is an ideal in R, and that N(x) = R if, and only if, x = 0.

If M is an ideal in R, and if x is an element in G, then a subgroup

¹ Presented to the Society, February 24, 1940.

of G is formed by the elements mx for m in M; and this subgroup may be denoted by Mx. (It is a subgroup of the cyclic group generated by x.) The correspondence between the element m in M and the element mx in Mx is a special case of the homomorphisms of M into G. Here a homomorphism ϕ of the ideal M in R into the abelian group G over R is defined as a single-valued function m^{ϕ} of the elements m in M with values in G which satisfies

$$(r'm' \pm r''m'')^{\phi} = r'(m'^{\phi}) \pm r''(m''^{\phi})$$

for m', m'' in M and r', r'' in R.

We are now ready to state and prove our main result.2

THEOREM 1. The following two properties of an abelian group G over the ring R are each a consequence of the other.

- (a) If G is a subgroup of the abelian group H over R, then G is a direct summand of H.
- (b) To every ideal M in R and to every homomorphism ϕ of M into G there exists some element v in G so that $m^{\phi} = mv$ for every m in M.

PROOF. Assume first that (a) is satisfied by G. If M is an ideal in R, and if ϕ is a homomorphism of M into G, then there exists one and essentially only one group H over R which is generated in adjoining to G an element h, subject to the relations

$$mh = m^{\phi}$$
 for every m in M .

It is a consequence of (a) that H is the direct sum of G and of a suitable subgroup K of H so that every element in H may be represented in one and only one way in the form: g+k for g in G and k in K. This applies in particular to the element h so that h=v+w for

² The following is a remark by the referee: "It is perhaps of some interest to observe that Theorem 1 contains a generalization of the theorem that every representation of a semisimple algebra is fully reducible. Indeed, how does one characterize those rings R such that *every* abelian group G admitting R as an operator ring has the property (a)? The answer is that every left-ideal in R must be generated by an idempotent element, and this is equivalent to saying that R is semisimple (both chain conditions and no radical).

[&]quot;The sufficiency of this condition is proved by showing that G has the property (b). Let $m \to m^{\phi}$ be any homomorphism of a left-ideal M of R into G. Since M = Re with $e^2 = e$, then me = m for every m in M, and if we take $v = e^{\phi}$ we have $m^{\phi} = (me)^{\phi} = me^{\phi} = mv$.

[&]quot;The necessity is proved by observing that every left-ideal M of R is itself an abelian group over R, and is a subgroup of R. Hence to each M there exists a complementary left-ideal N. From 1=e+e' with unique e in M, e' in N, one concludes in the usual way that $e^2=e$ and M=Re."

uniquely determined elements v and w in G and K respectively. Then $m^{\phi} = mh = mv + mw$ is for every element m in M an element in G, and so is mv and $m^{\phi} - mv = mw$. Since mw is an element in K, it follows that mw = 0 or $m^{\phi} = mv$ for every m in M; and this shows that (b) is a consequence of (a).

Assume now conversely that (b) is satisfied by the abelian group G over R, and that G is a subgroup of the abelian group H over R. Then there exists a greatest subgroup K of H whose meet with G is 0. The subgroup S of H which is generated by G and K is their direct sum; and hence it suffices to prove that H = S = G + K.

If $S \neq H$, then there exists in H an element w that is not contained in S. The coset W = S + w is an element in the quotient-group H/S and its order N(W) is an ideal in R. If m is any element in N(W), then mw is an element in S; and it follows from the construction of S that there exist uniquely determined elements g(m) and k(m) in G and K respectively so that

$$mw = g(m) + k(m)$$
 for m in $N(W)$.

Thus a homomorphism of N(W) into G is defined in mapping the element m in N(W) upon the element g(m) in G. There exists therefore by condition (b) an element v in G so that mv = g(m) for every m in N(W). The element w' = w - v consequently satisfies

$$S + w' = S + w = W$$

and

$$mw' = k(m)$$

for every element m in N(W). Since w is not an element in S, neither is w'. Since K is a greatest subgroup of H whose meet with G is 0, and since w' is not an element in S and therefore not in K, adjoining w' to K generates a subgroup whose meet with G is different from O. Hence there exists an element k in K, and an element r in R so that

$$k + rw' = g \neq 0$$

is an element in G. Since rw' = g - k is an element in S, it follows that r is an element in N(W) so that g = k + k(r) is an element in the meet of G and K. This contradicts, however, the construction of K and the choice of g. Our hypothesis $S \neq H$ has thus led us to a contradiction; and this completes the proof.

If M is an ideal in the ring R, and if G is an abelian group over R, then G is termed M-complete, if there exists to every homomorphism ϕ of M into G an element v in G so that $m^{\phi} = mv$ for every m in M. In

this terminology, condition (b) of Theorem 1 states that G is M-complete for every ideal M in R. It is our object to characterize the M-complete groups, provided M is a principal ideal. For this end we need several notations.

If M is an ideal in R, then denote by G_M the set of all the elements g in G which satisfy mg = 0 for every m in M. Note that G_M need not be a subgroup of the abelian group G over R, though it is closed with regard to addition and subtraction.

If p is any element in R, then pG consists of all the elements pg for g in G. Note again that pG need not be a subgroup of the abelian group G over R.

The principal ideal in R, generated by the element p in R, consists of all the elements rp for r in R and may therefore be denoted by Rp; and N(p) consists of all the elements r in R so that rp = 0. N(p) is clearly an ideal in R.

Theorem 2. The abelian group G over R is Rp-complete if and only if $G_{N(p)} \leq pG$.

PROOF. Suppose first that G is Rp-complete. If x is an element in $G_{N(p)}$, then r'p=r''p implies r'x=r''x, since the first equation is equivalent to the fact that r'-r'' is an element in N(p). Thus a homomorphism of Rp into G is defined in mapping rp upon rx. Since G is Rp-complete, there exists an element v in G so that rpv=rx for every r in R. This implies in particular that pv=x, that is, our condition is necessary.

Suppose conversely that our condition be satisfied by G. If ϕ is a homomorphism of Rp into G, then p^{ϕ} is an element in $G_{N(p)}$, since we have $r(p^{\phi}) = (rp)^{\phi} = 0$ for elements r in N(p). Hence there exists an element q in G so that $p^{\phi} = pq$; and clearly $(rp)^{\phi} = r(p^{\phi}) = r(pq) = (rp)q$ for every r in R so that G is Rp-complete.

COROLLARY 1. If p is an element in R so that N(p) = 0, then G = pG is a necessary and sufficient condition for Rp-completeness of the abelian group G over R.

This is a consequence of Theorem 2, since $G_0 = G$.

COROLLARY 2. If N(p) = 0 for every element $p \neq 0$ in the ring R, and if every ideal in R is a principal ideal Rp, then G = pG for every $p \neq 0$ in R is a necessary and sufficient condition for the abelian group G over R to be a direct summand of every abelian group H over R which contains G as a subgroup.

This is an obvious consequence of Theorem 1 and Corollary 1.

If, in particular, R consists of the rational integers, then the hypotheses of Corollary 2 are satisfied. In this case the sufficiency of the condition of the Corollary 2 has been known for a long time.³

An abelian group G over the ring R is termed *complete*, if it is M-complete for every ideal M in R. Thus the complete groups are just the groups satisfying the properties (a) and (b) of Theorem 1.

Theorem 3. Every abelian group over the ring R is a subgroup of a complete abelian group over the ring R.

PROOF. If G is an abelian group over the ring R, M an ideal in R, and ϕ a homomorphism of M into G, then there exists an abelian group H over R which contains G as a subgroup and which contains an element x so that $mx = m^{\phi}$ for every m in M.

By repetition of the construction of the preceding paragraph one may show that if G is an abelian group over the ring R, then there exists an abelian group G' over the ring R which contains G as a subgroup and which satisfies the following condition:

(3.1) If M is an ideal in R, and if ϕ is a homomorphism of M into G, then there exists an element v in G' so that $mv = m^{\phi}$ for every m in M.

Denote now by λ an ordinal number which is a limit-ordinal and whose cardinal number is greater than the number of elements in R. Then it follows from the second paragraph of the proof that there exists for every ordinal ν with $0 \le \nu \le \lambda$ an abelian group G_{ν} over R with the following properties:

- (i) $G_0 = G$;
- (ii) $G_{\nu} \leq G_{\mu}$ for $\nu < \mu$;
- (iii) G_{ν} is for limit-ordinals ν the set of all the elements contained in groups G_{μ} for $\mu < \nu$;
 - (iv) G_{ν} and $G_{\nu+1}$ satisfy condition (3.1).

Suppose now that M is an ideal in R and that ϕ is a homomorphism of M into $H = G_{\lambda}$. Then there exists an ordinal $\sigma < \lambda$ so that G_{σ} contains all the elements m^{ϕ} ; and there exists therefore an element v in $G_{\sigma+1}$ so that $mv = m^{\phi}$ for every m. H is therefore complete.

Theorem 4. To every subgroup G of the complete abelian group K over the ring R there exists a complete subgroup G^* of K which contains G as a subgroup and which satisfies the following condition:

(E) Every isomorphism of G upon a subgroup of a complete abelian group H over R is induced by an isomorphism of G^* upon a subgroup of H.

³ For a comparable proof see Annals of Mathematics, (2), vol. 37 (1936), pp. 766–767, (1; 1).

PROOF. If T is an abelian group over the ring R, if M is an ideal in R, then the homomorphism ϕ of M into T is termed reducible in T, if there exists an ideal M' in R and a homomorphism ϕ' of M' into T so that M < M' and so that ϕ and ϕ' coincide on M. If ϕ is not reducible, then it is irreducible in T.

(4.1) The abelian group T over the ring R is complete, if there exists to every ideal M in R and to every irreducible homomorphism ϕ of M into T an element v in T so that $mv = m^{\phi}$ for every m in M.

To prove this statement let J be an ideal in R and γ a homomorphism of J into T. Then there exists a greatest ideal M in R so that $J \leq M$ and so that γ is induced in J by a homomorphism ϕ of M into T. It is clear that ϕ is irreducible in T. Hence there exists an element v in T so that $mv = m^{\phi}$ for every m in M. This implies however that $nv = n^{\phi} = n^{\gamma}$ for every n in J, that is, T is complete.

It is a consequence of (4.1) and of the completeness of K that there exists an ascending chain of subgroups G_{ν} for $0 \le \nu \le \lambda$ with the following properties:

- (i) $G = G_0$;
- (ii) $G_{\nu} \leq K$ for $\nu \leq \lambda$;
- (iii) $G_{\nu+1}$ is generated by adjoining to G_{ν} an element g_{ν} with the following properties:
- (iii') The homomorphism of $N(G_{\nu}+g_{\nu})$ into G_{ν} which is defined by mapping the element m in $N(G_{\nu}+g_{\nu})$ upon the element mg_{ν} in G_{ν} is irreducible in G_{ν} .
- (iii'')⁴ G_{ν} does not contain any element x so that $mx = mg_{\nu}$ for every m in $N(G_{\nu} + g_{\nu})$.
- (iv) G_{ν} is for limit-ordinals ν the set of all the elements contained in groups G_{μ} for $\mu < \nu$.
 - (v) $G_{\lambda} = G^*$ is complete.

We are now going to prove that this subgroup G^* of K satisfies condition (E). Thus assume that ρ is an isomorphism of G upon the subgroup $G' = G^{\rho}$ of the complete group H. We are going to construct subgroups G'_{ν} of H and isomorphisms ρ_{ν} of G_{ν} upon G'_{ν} with the following properties:

- (1) $G' = G'_0$, $\rho = \rho_0$;
- (2) $G_{\nu}' \leq G_{\mu}'$ for $\nu \leq \mu$;
- (3) ρ_{ν} and ρ_{μ} coincide on G_{ν} for $\nu \leq \mu$.

In order to prove the possibility of this construction it suffices to show the existence of $G'_{\nu+1}$, $\rho_{\nu+1}$ under the hypothesis of the existence of G'_{ν} , ρ_{ν} .

⁴ This condition (iii'') is not really needed for the proof, though it is convenient for the construction of the chain G_{ν} .

A homomorphism irreducible in G'_{ν} of $M = N(G_{\nu} + g_{\nu})$ into G'_{ν} is defined by mapping the element m in M upon the element $m^{\phi} = (mg_{\nu})^{\rho_{\nu}}$. Since H is complete, there exists an element h in H so that $m^{\phi} = mh$ for every m in M. If $M' = N(G'_{\nu} + h)$, then it is clear that $M \leq M'$. If m is in M', then mh is an element in G'_{ν} . Thus a homomorphism γ of M' into G_{ν} is defined by mapping the element m in M' upon the element $m^{\gamma} = (mh)^{\rho_{\nu}^{-1}}$. If, in particular, m is an element in M, then $m^{\gamma} = mg_{\nu}$; and it follows from (iii') that M = M'. Suppose now that g' is an element in G'_{ν} and u an element in R so that g' + uh = 0. Then u is an element in M = M' and it follows from the above considerations that $-g' = uh = u^{\gamma \rho_{\nu}} = (ug_{\nu})^{\rho_{\nu}}$. Hence there exists one and only one isomorphism $\rho_{\nu+1}$ of $G_{\nu+1}$ upon the group $G'_{\nu+1}$, generated by G'_{ν} and h, which isomorphism induces ρ_{ν} in G_{ν} and maps g_{ν} upon h.

Thus there exists finally an isomorphism ρ_{λ} of $G^* = G_{\lambda}$ upon G_{λ}' which induces ρ in G; and this completes the proof.

COROLLARY. Assume that K is a smallest complete abelian group over the ring R containing the subgroups G_i . Then G_1 and G_2 are isomorphic if, and only if, there exists an automorphism of K mapping G_1 upon G_2 .

This is an obvious consequence of Theorem 4. It should be noted, however, that the complete group G^* , satisfying (E) and containing G, whose existence is assured by Theorems 3 and 4, is only "essentially smallest," but need not be "actually smallest."

University of Illinois