TYPICALLY-REAL FUNCTIONS WITH
@,=0 FOR n=0 (mod 4)!

M. S. ROBERTSON
1. Introduction. Let

(1.1) f(z) =2+ i An2"

be typically-real for Izl <1; that is, f(2) within this circle is regular
and takes on real values when and only when 2 is real. In particular,
if f(2) is univalent for |z| <1 and has real coefficients, it is also typi-
cally-real. We suppose in addition that

(1.2) an =0 for n = 0 (mod 4).

In this paper we obtain sharp inequalities for the coefficients an.
Sharp inequalities for a, are already well known? with the more re-
strictive condition

(1.3) an =0 for » = 0 (mod 2)

holding. In this case Ia,.l =< with equality occurring for the odd
function (z+2%) (1 —22)~2 If besides, f(2) is univalent and real on the
real axis, the coefficients are bounded and satisfy® the inequalities

(1.4) lazn-1|+|a2n+1|§2, |aal§1.

With the less restrictive condition (1.2) replacing (1.3) the author
obtains the following new and sharp inequalities:

(1.5) | an| 4+ 2732[(n — 2) | azm| +n| as| ] S5, m,nodd, n>1;
(1.6) | @n| + 27120 — 1) | az| £ n, n odd;
1.7 | an| + | ag] < 2872, | 2| < 2112, 7 even.

In each case the equality sign holds for the typically-real function

IIAIA T

2(1 — 212z 4 22)~1 = 212" sin nmw/4-gn,
1

Since this function is also univalent for |z| <1, the inequalities above

1 Presented to the Society, September 8, 1939.

2 See W. Rogosinski, Uber positive harmonische Entwicklungen und typisch-reelle
Potenzreihen, Mathematische Zeitschrift, vol. 35 (1932), pp. 93-121.

3 See J. Dieudonné, Polynomes et fonctions bornées d'une variable complexe, Annales
de I'Ecole Normale Supérieure, vol. 48 (1931), pp. 247-358.
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are sharp also for the class of univalent functions with real coeffi-
cients for which (1.2) holds.

Since (1.5) may be written in the form
(1.8) | azm | + | as] §23/2|:1—limsup|an/nl],

(1.7) will follow at once as well as the following theorem.

THEOREM. If within the unit circle the typically-real funciion
f(2) = 2+ 2 ans™, a, = 0 for n = 0 (mod 4),
2
has lim supyg e lan/nl =1, then f(2) is an odd function; that is to say,
a,=0 for n=0 (mod 2).

In a recent paper? the author discussed a similar problem when
a,=0for =0 (mod p), p odd, and particularly for p = 3. The method
used in that paper does not generalize completely to p>3. Certain
modifications in the method were necessary to take care of asym-
metric phases which appear when p >3, and these are given here for
p=4. The method appears to fail completely for p >4.

2. Proof of the inequalities. Let 5f(re®) =v(r, §), for r <1. Since f(2)
is typically-real for |z| =r<1,

o(r,0) >0 for 0<6<m, (r,0) <0 for 7 <0< 2m,
w(r,m —0) = —o(r, 7+ 6), o(r, 0) = — v(r, — 0).

In what follows we shall write v(7, 6) as simply »(8). Since also

(2.1)

(2.2) an =0 for » = 0 (mod 4),
it follows that
(2.3) f(2) + f(ze%) + f(ze™) + f(z6371%) = 0,

and in particular the imaginary part of the left-hand member is zero.
We write this as

(2.4) 2(0) + v(w/2 + 60) — v(w — 6) — v(w/2 — 6) = 0.
The coefficients of f(z) are given by
2

wr"

(2.5) A =

f 2(6) sin 76d6.
0

¢ See M. S. Robertson, On certain power series having infinitely many zero coeffi-
cients, Annals of Mathematics, (2), vol. 40 (1939), pp. 339-352.
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Let
f L4 /4 /2 3r/4 T
2() sin n6do =f +f -I—f +
(2-6) 0 0 /4 /2 3r/4

=L+I.+I:+ I,.
In I; let 6 =m/2—¢ and obtain

/4
(2.7 I, = f o(m/2 — ¢) sin n(w/2 — ¢)do.
0
In I3 let 6=7/2+4¢ and obtain

w4
(2.8) I; = f o(w/2 + ¢) sin n(w/2 + ¢)dé.

In I, let 6 =7 —¢ and obtain
T[4
(2.9) I,= f o(r — ¢) sin n(r — ¢)do.
0

In I, substitute for v(f) the value obtained from (2.4). Combining the
new forms for I, Is, I, and I, we have

f 2(¢) sin nedo
0

(2.10) »
- f {do(r — ) + Bo(x/2 — ) + Colx/2 + ¢)}ds,

where for brevity we write
A = sin n(zw — ¢) + sin np = 2 sin nw/2 cos n(w/2 — ¢),
(2.11) B = sin n(x/2 — ¢) + sin np = 2 sin nr/4 cos n(w/4 — @),
C = sin n(w/2 4+ ¢) — sin n¢p = 2 sin nw/4 cos n(w/4 + ¢).
Thus

/4

f v(¢) sin npdp = 2 sin mr/Zf o(w — ¢) cos n(w/2 — ¢)d¢
0

0

(2.12) + 2sin "”/41;”47’(""/2 — ¢) cos n(w/4 — ¢)do

/4

+ 2 sin nr /4 f o(x/2 + &) cos n(r/4 + ¢)de
0

= K; + K + K.



1940] TYPICALLY-REAL FUNCTIONS 139

In Kylet¢p=7w/2—a, in Ky letp =7/4—a, and in K;let p=a—7/4.
Then

/2

f 2(¢) sin node = 2 sin nxr/2 f v(w/2 + a) cos nada
2.13) °° m

/2

+ 2 sin mr/4f »(7/4 + a) cos nada.
0
Hence the formula (2.5) for the coefficients a, may be replaced by

4 /2
a, = ———;[sin n1r/2f o(w/2 + ¢) cos npde

Tr /4

(2.14) i
+ sin n7r/4f o(w/4 + ¢) cos n¢d¢:|.
0

In particular, since a;=1 we have

4 /2

== [ utw/2+ 9) cos g
TV x4

(2.15)

2812 /2

+— v(r/4 + ¢) cos ds.
r

0
For even values of n=2k, k odd, we have

4(_ 1)70—1 /2
(2.16) Qs = ——————f v(w/4 4+ ¢) cos 2k¢de,
0

Tr? k

whence follows the inequality (to be used later)

4 w2
(2.17) —f o(n/4 + ¢)dp = ™| azm|,
m™Jo

and in addition the equality

4 /2
= [ etasa+ 0120
2.18)

8 /2
== [T o6 + w/4) cost kods + (= 1)an.
™Yo

From (2.14) we have for odd values of #
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4n (/2
ars §—f (¢ + 7/2) cos ¢pdo
™ Y or/4
(2.19)

23/2 /2
i f o(¢ -+ 7/4)do.
™ 0

With the aid of (2.18) the last inequality becomes

yn i an ‘ 4 (—1)+-12- 1122k,

4n T2 25/2 w2
é-—f v(p+m/2) cos q.‘>d¢+—f v(p+7/4) cos? kpdo
™ /4 0

™
2512p

411/ /2 /2
=— f v(¢+m/2) cos ¢pdo+ f v(¢p+m/4) cos ¢pdo
™ /4 0

™

4 |2 23/2 w2
=(n—2k) [*f v(¢+m/2) cos ¢pdp+— v(¢p+m/4) cos ¢d¢]
™ P ™

/4 0
4 2 2812 w2
Iy [— [ ststw/2) cos gast— [ " otgtn/a) cos ¢d¢]
™ /4 ™ 0

2812 (n—2k) [ 72
———f v(¢+7/4) cos ¢d¢,
™

0

whence, on account of the equalities (2.15), (2.18) with k=1, and
(2.17) for values of 2k<n, we have

,n' anl + (_ 1)1c—12—1/2,,2ka2,c

28/2(p — 2k) (T2
< rn — —————f (¢ + w/4) cos? ¢pdo
(2.20) i ’

21/2

4 /2
m — — (n — 2k) [—f (¢ + w/4)do + r2a2:l
4 ™ Jo

< rm — (2QU2/4)(n — 2k) [r“‘l a2m| + r2a,].

By considering the function —f(—z2), which is also typically-real, we
obtain an inequality similar to this last one except that @, and @z have
been replaced by —a; and —asr. Consequently, on combining both
inequalities and letting 7 approach one we have for & and # odd

l an] +2-32[(n—2k) ’ a2,,.|

(2.21)
+ | (—2k)as+(—1)* 243 || <, 2k<n.

In particular, for 2=1 we derive for » odd



1940) TYPICALLY-REAL FUNCTIONS 141

(2.22) | an| 4 2-42[(n — 2) | a2m| + 7| a2]] < =, n>1.
If in addition m =1, then for # odd
(2.23) | | + 27120 — 1) | aa| < n.

From (2.22) on dividing by # and letting n—o we have

] < 232

fﬁ'gl—z—uzlagl.
n

n

| azm| + | a2 = 23/2[1 — lim sup
n

n—o

(2.24)

| az| = 212, lim sup

n—o

Though (2.22), (2.23), and (2.24) hold for m either even or odd,
the interesting inequalities are for #» and m both odd. In this case

they are sharp, as is seen from an inspection of the coefficients of the
univalent function

a(1 — 2% + z2)~1 = 212 sin nw/4-27.

n=1
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