
QUADRATIC AND LINEAR CONGRUENCE* 

R. E. O'CONNOR, S.J. 

The number of simultaneous solutions of a quadratic and a linear 
congruence does not seem to be discussed in the literature, yet a 
knowledge of the invariants necessary to specify this number should 
lead to an arithmetical classification of the form-pairs involved. This 
preliminary investigation is confined to congruences with modulus 
odd and prime to the g.c.d.'s of the two sets of coefficients. From the 
formulas obtained, a simple use of the Chinese Remainder Theorem 
will give the number of solutions for any such modulus which is either 
square-free or at least whose prime factors of power greater than the 
first are of a definite class. An interesting application, of a different 
type from the preceding, is given in §6. Special cases of this and of 
Theorem 1 have already been proven.f 

1. Hypotheses and definitions. We shall be considering the number 
N(pm) of simultaneous solutions of the congruences 

n n 

(lm) f(x) = X <H&&i = r> g(%) = S Ci°°i — s ( m 0 d Pm) 
1 1 

with f and g integral forms, n ^ 2, r and s integers, and p an odd prime 
dividing neither the g.c.d. of the coefficients o f f nor that of g. Defining 
<f)(x, t)=f(x) + 2tg(x), let a be the determinant of ƒ, /J, be the modulo p 
rank of a, b be the determinant of </>, v be the modulo p rank of ô, and 
k = s2a+rb. 

With the above forms are to be associated three others—F(x), 
G(x) and <£(#, /) = F(x) + 2tG(x)—related to the above as follows. By 
a well known theorem J we can find a linear, integral transformation 
T of determinant unity that takes ƒ into a form ƒ' which is congruent 
(mod pm) to a form 

F(x) = <Zi#i2 + • • • + UnXn , 

where p\aia% • • • #M, p\all+i, #M+2, • • • , a>n. The transformation T', 
identical with T for the variables x and taking t into itself, is also 
unimodular and takes 0(#, /) into the form f'(x) + 2tG(x), where 

GO) = M i + • • • + bnxn. 

* Presented to the Society, April 14, 1939. 
t G. Pall and R. E. O'Connor, American Journal of Mathematics, vol. 61 (1939), 

pp. 491-496. 
t Minkowski, Gesammelte Abhandlungeny vol. 1, p. 14. 
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Let A be the determinant of F and B the determinant of <£. 
If we consider now the congruences 

(2W) F(x) s r, G(x) s s (mod £m), 

the following facts are clear. The prime p divides neither the g.c.d. 
of the di's nor that of the J / s ; A =a, B^b (mod pm); the modulo p 
ranks of the matrices of F and $ are respectively fx and *>; and the 
number N(pm) of solutions of (lm) is the number of solutions of (2™). 

A singular solution of (lw) is a solution $ such that, for some in­
teger X (including zero), p divides each of the n integers^?(#*ƒ£ƒ) — As* 
for i = 1, 2, • • • , w. From the fact that this expression is obtained by 
setting / = —A in the partial derivative of <fr(x,t)/2 with respect to Xi, 
it is easily seen that the transformation T defines a one-to-one corre­
spondence between the singular solutions of (lm) and those of (2m). 
Solutions of the congruences which are not singular we shall call ordi­
nary. 

2. Inhomogeneous quadratic congruence. We shall need explicit 
formulas for the number Q of solutions of 

n n 

(3) ]>j oLijXiXj — 2s^2 P*x* = c (mod p) 
1 1 

in several hypotheses. 

LEMMA.* Let p be an odd prime) let s, c, an ( = «,-,•), and j3if 

(i, j — 1, 2, • • • , n), be assigned integers] let b be the determinant \OHJ\ 
and b' the integer —J^^A iSifij, where A^ is the cofactor of a^ in b. 

(4i) If p\sb', p\b, then Q = pn~\ 
(42) If p\b', p\ b, s, then, according as n is even or odd, Q—pn~l 

= p(«)((--iyn)ô'c\p) or p^plcjd-iy^ô'lp). 
(43) If p\b, - - - , then, according as n is even or odd, Q — pn~x 

= p(n)-1p[<r]((-iyn)b\p) or £<»>((-1)<»><T|/>). 

Here (n) in the indices stands for n/2 or (n—1)/2 according as n is 
even or odd; a for be — b's2; and p[z] for p — 1 — p(z2\p) and hence for 
p — 1 or —1 according as p\z or p\z. These formulas are valid for 
n^ 1, as is evident from the proof except in the case (42) with n = 1 ; 
but for this case (42) is easily verified directly. 

By the process used to replace <j> by <E> in §1, we can replace (3) by 

* Formulae (4i) and (48) for the case w = 2 are given by R. LeVavasseur (Mémoires 
de TAcadémie des Sciences de Toulouse, (10), vol. 3 (1903), p. 39). A confusion of 
sign in summary on p. 46 has led to a similar confusion in Dickson, History of the 
Theory of Numbers, vol. 2, p. 327. 
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(S) X) aiy? — 2 S 1 L yiji s c ( m o d p)> 
1 1 

which has the same number of solutions as (3) and where 

, .. «1«2 • • • «« = Ô, 7l2«2ûf3 ' ' ' «n + T22«3«4 ' ' ' « n a i + • • • 
(6) 

+ Yn2ai<22 * * * «n-1 = ~ 5 ' (mod />) . 

From (6) it is clear that the hypothesis p\b and p\h' implies 
that p divides exactly one of the a / s , say an, and that p does 
not divide the corresponding y{, that is yn, and consequently that 
§'== —y2aiOL2 . . . a w x (mod £). Thus in the hypothesis of (4i) the 
left side of (5) contains a nonzero linear term, say 2synyn, such that 
the corresponding quadratic coefficient vanishes (mod p). The num­
bers yi, y2, - • - y yn-i niay be chosen arbitrarily and yn is uniquely 
determined to satisfy (5). 

In the hypothesis of (42), one quadratic and all linear coefficients 
of (5) vanish (mod p). Let p\an. The number of solutions of (5) is 
then p times that oîy£j[~laiy}^c (mod p). This gives* (42) in view 
of the remark immediately following (6). 

To establish (43) we can transform (5)—since no ai vanishes— 
m t o ]C?a<2* ^c+Rs2 (mod p) by the transformation yi^Zi+saf/i, 
(i = l, 2, — • , n), where a» is some integer satisfying a»at = l (mod p). 
Here R will beX)a*7*2> s o by (6) i£S= — h' (mod p). The number of 
solutions z is then given by (43). 

3. N(p) for simple invariants. The following theorem is required 
for the proof of the more general Theorem 2 but in certain applica­
tions is more useful than the latter. 

THEOREM 1. With the hypotheses and definitions of §1, 
(7i) if p\ as, p\ b, then N(p) =£ n ~ 2 ; 
(^2) if P\a> p\b, s y then, according as n is even or odd, N(p)—pn~2 

=p™~lp[r]((-iy»>a\p) or p™((-ï)™ar\p)\ 
OB) if p\b, • • • then, according as n is even or odd, N(p)—pn~2 

= />(»>-i((-l)0Ojfe|/>) or pi»>-lp[k]((-iy»>+lb\p). 
The superior symbol (n) and the symbol p [ ] are defined in the lemma. 

* Here and later we make use of the following theorem : The number of solutions 
of the quadratic congruence U\x£-\-U2x£-\- • • • -\-unxn

2^h (mod p), where p is an odd 
prime, p\u — u\U<t • • • «n, h an arbitrary integer and nèzl, is given by the formula, 
pn-i+p(n-vl*'p[h]((-l)nl*u\p) or £n-i_|_£(n-i)/2((_l)(n-i)/2w^|p) according as n is 
even or odd. Here we have written p[h] for p — 1— p(h2\p) and (z\p) is a Legendre 
symbol. These formulae were first given by C. Jordan in Comptes Rendus de 
l'Académie des Sciences, Paris, vol. 62 (1866). D. 687. 
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Replacing (l1) by (21), we may suppose p\bT* Solving the linear 
congruence of (21) for xr and substituting this in the quadratic, we 
obtain, on multiplying the resulting éliminant by b?, 

J2'(bT
2ai + b?aT)x? + aT^'bibjXiXj 

(8) i9àf 

— Isdr^j'biXi = bT
2r — aTs2 (mod p), 

where ̂ ' indicates that i,j are to be summed over the first n positive 
integers excluding r. The number of solutions of (8) will coincide 
with N(p). The determinant of the quadratic coefficients of (8) is 
identically — ôr

2(n"~2)j5, as may be seen for example by considering 
this determinant algebraically, subtracting bi/bi times the first col­
umn from the column corresponding to the variable #* for each i^l 
or r, then multiplying every column except the first by b\ and finally 
dividing every row except the first by b\b?. The determinant of the 
whole left side of (8) considered as a form in variables x, s, which is 
the determinant corresponding to ô' of lemma, is easily seen to be 
identically bT

2{n^2)(bT
2A+aTB). The formulas (7) are then obtained 

directly from the lemma, recalling only that A = a , B^b (mod p). 

4. N(p) for unrestricted invariants. We shall write Xt(*)> 
(i = l, • • • , n), for the ith concomitant* of a quadratic form 
x(x)=Xi(%) and (xi\p) for the quadratic character (mod p) of 
any integer prime to p represented by Xi(x)> implying that the 
character is definitely 1 or — 1 . If p\r, we also define yp(x, t)=f(x) 
+ 2tg(x)+ct2 where c is an integer satisfying rc^s2 (mod p). We can 
then prove 

THEOREM 2. The number N(p) of solutions of (l1) is given in all 
cases by the following table: 

Hypothesis Value of N(p) -pn~2 (/x even) Value of N(p) -pn~2 (/* odd) 
(90 *> = ju+2 P"+<»p[r]a-l)<»ab)\p) r H W ( ( - l ) ( % W | r t 
(90 r - M + 1 />»- 1 -W(( -1)OO*(M) | /0 Pn-2-wp[k^)]((-Dw+1b(tx)\p) 
(90 v = p,pïs 0 0 
(90 *-/*, P\s *»- l-w*[f]((-l)WaOi)|#) P"-^K(-\y»ra(n)\p) 

Here (fi) in indices is written for fi/2 or (ju—1)/2, according as JJL is 
even or odd;p[z] is written for p — 1 — p(z2\ p) and hence for p — 1 or — 1, 
according as p\z or p\z\ a{p) is defined below, but (a(n)\p) = (/M|jf>); 
b(fx) is defined below, but (b(fx)\p) = (<j>ti+i\p)1 if v=ix+l; k(fx) is de­
fined below y but (k(fi) | p) has the following invariant meaning ifv=ix-\-l: 
*fp\r, (*G01P) = (s2a(fx)\p),if p\r, (k(fx)\p)=0or W,+1\p), accord­
ing as p\^^i(x) or p\\[/p+i(x). The other symbols are defined in §1. 

* Cf. H. J. S. Smith, Collected Mathematical Papers, vol. 1, p. 412. 
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We may replace (l1) by (21) and define a(/z)=aia2 • • • aM1 

b(jx) = —(bfa2as • • • aM+ô2
2#a#4 • • • aM#i+ * * * +&/Mia2 * • • <V-i)> 

fe(ju)=52a(ju)+^(/x). Recalling that p\a(jj), p\ayL+i, aM+2, • • • , a», a 
moment's consideration of the matrix of <£ shows that ju = ^ M + 2 
and tha t the condition v=ti+2 is necessary and sufficient for there 
to be an index r > / i such that p\bT. Hence, if J>=JU+2, N(p) is p71-»-1 

times the number of solutions of 

ai^i2 + a^xg + * * ' + anx? = ^ (m°d ƒ>), 

and taking this number from the note under §2, we have (9i) valid 
for / i ^ l ; i f p < / A + 2 , N(p) is >̂n~̂  times the number of solutions of 

#i#i2 + a2#22 + • • • + #M#M2 = r> 

biXi + 62x2 + • • • + b^Xf, = 5 (mod ^ ) , 

and we can take this number directly from Theorem 1 since the sub­
cases v=fJL+l, v~\x coincide with the conditions p\b{p), p\b(ji), re­
spectively. This gives (92), (93) and (94) for /x^2 . If/x = l with v=fxy 

every bi is divisible by p. To prove (92) for ju = 1, note that N(p) is pn~l 

times the number of solutions Xi of aix? s r , i ^ i s s (mod p) where 
p\aibi ; hence, N(p) = £ n _ 1 {1 — (v2 \ p)} where v = a±s2 — bi2 r, a formula 
to which (92) reduces for ju = 1. 

The statements regarding the invariant values of (a(ji) \ p)> (b(ji) \ p) 
and (k(n)\p) may be justified as follows. By definition, a(ju) is the 
only nonzero (mod p) determinant of order JJL in the matrix of F; &(/x), 
in the case v = / z+1 , is the only nonzero (mod p) determinant of order 
M+l in the matrix of <£; k(fx)/rt in the case ? = / z + l , £ | r , is a determi­
nant of order / J + 1 in the matrix of ^ (x , t) = F(x) + 2tG(x)+ct2 while 
all the other determinants of like order certainly vanish (mod p). Also 
each of these three determinants is principal. These statements re­
main true if/' is substituted for F in each of the three forms; but the 
three forms resulting are equivalent respectively t o / , </> and yj/. Recall­
ing then that corresponding concomitants of two equivalent forms 
are likewise equivalent, the statements of the theorem are seen to be 
correct. 

5. Modulus pm. With m > 1 it seems we have to distinguish between 
ordinary and singular solutions (cf. §1). 

THEOREM 3. With m*zl, the number M(pm) of ordinary solutions of 
(lm) is ^(w~2)<w-1) M(p), where M(p) is the number of ordinary solutions 
of(ll). 

We may replace (lm) by (2m). The theorem being clearly true for 
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m = 1, let ra>l. Every ordinary solution of (2m) is an ordinary solu­
tion of (2m-1) and hence each of the former is represented just once 
by Zi = Xi+pm~lyi, (i=l, 2, - - - , n), as x ranges through a complete 
set of ordinary solutions of (2m~1) and, with each such x, y ranges 
through a complete (mod p) set of solutions of the congruences for y 
obtained by substituting z for the variables in (2m). These con­
gruences are 

n n 

(11) X) WiVi s P> ]C foVi ~ °" ( m o c i P) > 
1 1 

where p, a are integers dependent on x. The condition that x be not 
singular implies that the matrix of the coefficients of y in (11) has 
modulo p rank equal to 2; hence, (11) has precisely pn~2 solutions y. 
The theorem follows immediately. 

In cases where singular solutions occur, formulas for the total num­
ber N(pm) of solutions of (lm) are not yet available except for m = 1. 
The following theorem, taken with the two preceding, gives explicit 
formulae for M(pm) in all cases and for N(pm) in the cases where no 
singular solutions occur. 

THEOREM 4. The number of singular solutions of (l1) is pn+1~v in 
each of the three cases: (i) ^= /x+2 , p\r\ (ii) i>=/x+l, (^(/x)|#>) == 0; 
(iii) v =ju, p\ r, p\ s. In no other cases have the congruences singular solu­
tions. (Cf. Theorem 2 for definition of k(fx) and invariant interpreta­
tion of (k(ji)\p).) 

We consider congruences (21). The existence of a singular solution x 
implies that of an integer X satisfying 

(12n) aiXi s= \bi, i = 1, 2, • • • , n, 

(13) r = \s(modp), 

where (13) is obtained by substituting \bi for each a%Xi in (21) which 
gives y£fiiXi = r, ^biXi^s (mod ƒ>). 

Now let v = n+2. There is a subscript r>fx such that p\bTt p\aT. 
Formulas (12) and (13) then imply that \^r^0 (modp). Conversely, 
if r==0, choosing X = 0 determines xi = x* = • • • ==#M==0 and leaves Xi 
arbitrary for i>ix\ to be a singular solution of (21), this set must also 
satisfy ] C M + A ' ^ — S (mod P) and these conditions suffice. Thus there 
are pn~^~x singular solutions. 

Let V<IA+2. There is no such subscript r and (21) admits precisely 
pn""lt times as many singular solutions as (10). But if (xi, #2, • * • , #M) 
is a singular solution of (10), (12**) and (13) must be satisfied and 



798 R. E. O'CONNOR 

substitution from (12") in the linear congruence of (10) yields 
\b(ix)+sa(iJ,)z=0; this, multiplied by s, gives p\k(fx) in view of (13). 
If *>=/* (that is, if p| Ô(M))> this further implies/)[s, p\ r. Conversely let 
p\ k(/j,). If p\s, the singular solution of (10) is uniquely determined by 
(12") and (13); if p\s, then by (13) p\r. Taking (xh x2, • • • , #M) 
from (12"), the left members of (10) are congruent respectively to 
\2b(p)/a(ix) and \b(fx)/a(jjL). Thus (10) is satisfied by singular solu­
tions in p ways (X arbitrary) if p\ b(fi) and uniquely (X = 0) if p\b(jx). 

6. Simple applications. I t follows simply from this theorem that, 
ifp\k = s2a+rb, then (l1) admits no singular solution. (For if p\a, then 
fi = n, P^IX+1, and & = &(/z); while if p\a the condition implies p\rb 
and hence i>=ju+2, p\r.) Thus Theorems 1 and 3 give very simple 
formulas for N(pm) in this case. Other similar conclusions can easily 
be drawn. 

Theorem 1 has the following interesting application, pointed out 
by Dr. Gordon Pall. Let an be a symmetric matrix of integers, of order 3 
and with determinant prime to the odd, square-free integer m. Then a 
necessary and sufficient condition that two solutions x, y of the congruence 

(14) £ «Mi s 0 (mod m) 

should satisfy 

(15) ]T) anXiyi s= 0 (mod m) 

is that x, y be linearly dependent (mod m). 
For, taking m equal to a prime p, the number of simultaneous solu­

tions y of the quadratic congruence (14), with y in place of £, and 
the linear congruence (15), for x^0} is easily calculated by the for­
mula (72) to be p; and this number is exhausted by the solutions 
3/== (A#i, A#2, X#3) (mod p)y X = 1, 2, • • • , p. This is easily extended to 
m as specified by the Chinese Remainder Theorem. 

If we relate integral vectors to the quadratic form with matrix (an) 
and adjoint (Aa) by defining norm of x=^AijXiXj, inner product of 
x, y=Yl,AijXiyj, it follows (since \A^\ with \an\ is prime to m) that 
a necessary and sufficient condition that two vectors of norm zero (mod m) 
be linearly dependent (mod m) is that their inner product be zero (mod 
m). 
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