QUADRATIC AND LINEAR CONGRUENCE*
R. E. O'CONNOR, S.J.

The number of simultaneous solutions of a quadratic and a linear
congruence does not seem to be discussed in the literature, yet a
knowledge of the invariants necessary to specify this number should
lead to an arithmetical classification of the form-pairs involved. This
preliminary investigation is confined to congruences with modulus
odd and prime to the g.c.d.’s of the two sets of coefficients. From the
formulas obtained, a simple use of the Chinese Remainder Theorem
will give the number of solutions for any such modulus which is either
square-free or at least whose prime factors of power greater than the
first are of a definite class. An interesting application, of a different
type from the preceding, is given in §6. Special cases of this and of
Theorem 1 have already been proven.}

1. Hypotheses and definitions. We shall be considering the number
N(p™) of stmultaneous solutions of the congruences

U™ f&) = Damwi=r, gx) = 3 o = s (mod pm)
1 1

with f and g integral forms, n=2, r and s integers, and p an odd prime
dividing neither the g.c.d. of the coefficients of f nor that of g. Defining
o(x, t)=Ff(x)+2tg(x), let a be the determinant of f, u be the modulo p
rank of a, b be the determinant of ¢, v be the modulo p rank of b, and
k=s%a-+rb.

With the above forms are to be associated three others—F(x),
G(x) and ®(x, ) = F(x)+2tG(x)—related to the above as follows. By
a well known theorem{ we can find a linear, integral transformation
T of determinant unity that takes f into a form f’ which is congruent
(mod p™) to a form

F(x) = ayx? + - -+ + a2,

where pla:as - - - @y, P|@ut1, Guyz, - -+, @n The transformation T,
identical with T for the variables x and taking ¢ into itself, is also
unimodular and takes ¢(x, £) into the form f’(x)+2tG(x), where

G(x) = b1x1 + v + b,.x,,.

* Presented to the Society, April 14, 1939.

t G. Pall and R. E. O’Connor, American Journal of Mathematics, vol. 61 (1939),
pp. 491-496.

1 Minkowski, Gesammelte Abhandlungen, vol. 1, p. 14.
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Let 4 be the determinant of F and B the determinant of ®.
If we consider now the congruences

27 F(x) =7, G(x) =s (mod p™),

the following facts are clear. The prime p divides neither the g.c.d.
of the a;'s nor that of the b;'s; 4 =@, B=b (mod p™); the modulo p
ranks of the matrices of F and ® are respectively u and v; and the
number N(p™) of solutions of (1™) is the number of solutions of (2™).

A singular solution of (1™) is a solution ¢ such that, for some in-
teger A (including zero), p divides each of the # integers Y ;(a:;£;) — \c;
fori=1, 2, - -, n. From the fact that this expression is obtained by
setting £= —\ in the partial derivative of ¢(x, £)/2 with respect to x;,
it is easily seen that the transformation T defines a one-to-one corre-
spondence between the singular solutions of (1™) and those of (2™).
Solutions of the congruences which are not singular we shall call ordi-
nary.

2. Inhomogeneous quadratic congruence. We shall need explicit
formulas for the number Q of solutions of

3) i @i — ZSzn: Bix: = ¢ (mod p)
1 1

in several hypotheses.

LeMMA.* Let p be an odd prime; let s, ¢, ay; (=aj), and B
¢,7=1,2, -, n), be assigned integers; let & be the determinant ]a.~,~|
and &' the integer —y A B:B;, where As; is the cofactor of ai; in 8.

(41) If plsd’, p| 8, then Q=pm1.

(42) If pté’, pl 8, s, then, according as n is even or odd, Q—p»~!
=p™((—1)™8%c|p) or pmp[c]((—1)™+18"| p).

(45) If pld, - - -, then, according as n is even or odd, Q—p™!
= p™=1p[o]((— 1) 8| p) or p™((—1)Wa] p).

Here (n) in the indices stands for #/2 or (#—1)/2 according as # is
even or odd; o for dc—§’s?; and p[z] for p—1—p(2?| p) and hence for
p—1 or —1 according as p]z or plz. These formulas are valid for
n=1, as is evident from the proof except in the case (42) with n=1;
but for this case (42) is easily verified directly.

By the process used to replace ¢ by ® in §1, we can replace (3) by

* Formulae (41) and (4;) for the case #n=2 are given by R. LeVavasseur (Mémoires
de ’Académie des Sciences de Toulouse, (10), vol. 3 (1903), p. 39). A confusion of
sign in summary on p. 46 has led to a similar confusion in Dickson, History of the
Theory of Numbers, vol. 2, p. 327.
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() 2 aiyd — 232 viy: = ¢ (mod p),
1 1

which has the same number of solutions as (3) and where

©) Qg g =6, ylagag - on + ylosas - gy - -

+ ydasas - ¢ - apoy = — &’ (mod p).

From (6) it is clear that the hypothesis p|6 and p}té’ implies
that p divides exactly one of the «;'s, say a,, and that p does
not divide the corresponding %;, that is 9., and consequently that

'=—v.2aias - - - an_y (mod p). Thus in the hypothesis of (4;) the
left side of (5) contains a nonzero linear term, say 2sy,Y., such that
the corresponding quadratic coefficient vanishes (mod p). The num-
bers y1, ¥2, * - -, ¥n—1 may be chosen arbitrarily and y, is uniquely
determined to satisfy (5).

In the hypothesis of (4;), one quadratic and all linear coefficients
of (5) vanish (mod p). Let pla,,. The number of solutions of (5) is
then p times that of D " layy2=c (mod p). This gives* (4) in view
of the remark immediately following (6).

To establish (4;) we can transform (5)—since no «; vanishes—
into D _ra;z# =c+Rs? (mod p) by the transformation y;=z;+saz:,
(¢=1,2, - - -, n), where a; is some integer satisfying a;,a;=1 (mod p).
Here R will be >_asy2, so by (6) Ré=—48’ (mod p). The number of
solutions z is then given by (43).

3. N(p) for simple invariants. The following theorem is required
for the proof of the more general Theorem 2 but in certain applica-
tions is more useful than the latter.

THEOREM 1. With the hypotheses and definitions of §1,

(12) if pt as, p|b, then N(p)=p"*;

(72) if pla, plb, s, then, according as n is even or odd, N(p)—pm?
=p™=p[r]((—1)™a| p) or p ((—1)™ar| p);

(73) if plb, - - - then, according as n is even or odd, N(p)—p 2
= p™=1((— 1)@k p) or p™=1p[k]((=1)™+1b]p).

The superior symbol (n) and the symbol p| | are defined in the lemma.

* Here and later we make use of the following theorem: The number of solutions
of the quadratic congruence wx®+usx?+ - + + +unx2=h (mod p), where p is an odd
prime, plu=tts - - - un, h an arbitrary integer and n=1, is given by the formula,
PP 14D [R]((—1)2u| p) or pr—i4pt=I2((—1)=Di2uh|p) according as n is
even or odd. Here we have written p[k] for p—1—p(k?|p) and (z|p) is a Legendre
symbol. These formulae were first given by C. Jordan in Comptes Rendus de
I’Académie des Sciences, Paris, vol. 62 (1866). p. 687.
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Replacing (1!) by (2'), we may suppose p}b,. Solving the linear
congruence of (2!) for x, and substituting this in the quadratic, we
obtain, on multiplying the resulting eliminant by 52,

D(bra; + bra)xd + a, ) 'bibixix;
(8) i

— 250, 'bix; = b2r — a,s* (mod p),

where Y’ indicates that 4, j are to be summed over the first # positive
integers excluding 7. The number of solutions of (8) will coincide
with N(p). The determinant of the quadratic coefficients of (8) is
identically —b,2»=»B, as may be seen for example by considering
this determinant algebraically, subtracting b;/b; times the first col-
umn from the column corresponding to the variable x; for each 751
or 7, then multiplying every column except the first by b, and finally
dividing every row except the first by b:5,2. The determinant of the
whole left side of (8) considered as a form in variables x, s, which is
the determinant corresponding to 8’ of lemma, is easily seen to be
identically 5,22 (24 +a,B). The formulas (7) are then obtained
directly from the lemma, recalling only that 4 =a, B=b (mod p).

4. N(p) for unrestricted invariants. We shall write x.(x),
(¢=1,---,n), for the 7<th concomitant* of a quadratic form
x(x) =x1(x) and (Xil p) for the quadratic character (mod p) of
any integer prime to p represented by x:(x), implying that the
character is definitely 1 or —1. If p}r, we also define ¢(x, £) =f(x)
+2tg(x) +ct? where ¢ is an integer satisfying r¢=s? (mod p). We can
then prove

THEOREM 2. The number N(p) of solutions of (1') is given in all
cases by the following table:

Hypothesis Value of N(p) —p»~2 (u even) Value of N(p) —p"? (v odd)
@) v=ut2 Pl l((—1)Waw)|p)  pEG(=1)Prau)| p)
%) v=p+1 PrTO((—1)Wk(w)| ) 2 ®p k() | ((— 1) @b ()| p)
©9:) v=p, pfs 0 0
%) v=p, P{S o[ [((—1)Waw)|p) P ®((—1)®@ra(u)| p)
Here (u) in indices is written for u/2 or (u—1)/2, according as u is
even or odd; p|z)] is written for p—1— p(z2| p) and hence for p—1 or —1,
according as p]z or ptz; a(u) is defined below, but (a(,u.)| p)=(f,.| £);
b(u) is defined below, but (b(w)|p) = (Bus1| p), if v=p+1; k(u) is de-
fined below, but (k(u) | P) has the following invariant meaning if v=u-+1:
if plr, (kR(w)|p)=(s%aW)|), if ptr, (kW)|p) =0 or (W1a| p), accord-
ing as p|Yu1(x) or piY,1(x). The other symbols are defined in §1.

* Cf. H. J. S. Smith, Collected Mathematical Papers, vol. 1, p. 412.
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We may replace (1!) by (21 and define a(u)=aia: - - - a,,
b(u)=—(b2azas - - - ay+bdlasas- - - auai+ - -+ +blaas- - a,),
k(u) =s2a(u)+rb(u). Recalling that pfa(w), p[a,‘“, Guyay ** * y Gpy A
moment’s consideration of the matrix of ® shows that u<y=u-+42
and that the condition y=pu-2 is necessary and sufficient for there
to be an index 7 >u such that p}b,. Hence, if v=p-+2, N(p) is pm—+!
times the number of solutions of

axd + asxd + - - + aux? =7 (mod p),

and taking this number from the note under §2, we have (9;) valid
for u=1;if v<u+2, N(p) is p** times the number of solutions of

a1x? + axd + - - - + ol =7,
bixy + baxs + - - - 4 bux, = s (mod p),

and we can take this number directly from Theorem 1 since the sub-
cases v=u-+1, v=p coincide with the conditions ${b(u), pl b(u), re-
spectively. This gives (92), (9;) and (94) for u=2. If u=1 with v =y,
every b; is divisible by . To prove (9;) for u =1, note that N(p) is p!
times the number of solutions x; of awx? =7, bxi=s (mod p) where
plaibi; hence, N(p) = p»~1{1— (v2[ p)} where v=a,5s2—b7, a formula
to which (9:) reduces for p=1.

The statements regarding the invariant values of (a(u) | ), (b(w) | )
and (k(p,)lp) may be justified as follows. By definition, a(u) is the
only nonzero (mod p) determinant of order u in the matrix of F; b(u),
in the case v =p-1, is the only nonzero (mod p) determinant of order
p+1in the matrix of ®; k(u)/7, in the case v=p—+1, p{7, is a determi-
nant of order u+1 in the matrix of ¥(x, ¢) = F(x)+2tG(x) +ct? while
all the other determinants of like order certainly vanish (mod p). Also
each of these three determinants is principal. These statements re-
main true if f’ is substituted for F in each of the three forms; but the
three forms resulting are equivalent respectively to f, ¢ and y. Recall-
ing then that corresponding concomitants of two equivalent forms
are likewise equivalent, the statements of the theorem are seen to be
correct.

(10)

5. Modulus p™. With m >1 it seems we have to distinguish between
ordinary and singular solutions (cf. §1).

THEOREM 3. With m =1, the number M(p™) of ordinary solutions of
(Am) s pn=2 =1 M (D), where M (p) is the number of ordinary solutions
of (1Y).

We may replace (1) by (2™). The theorem being clearly true for
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m=1, let m>1. Every ordinary solution of (2™) is an ordinary solu-
tion of (2"~1) and hence each of the former is represented just once
by zi=x:+p™ Yy, (1=1, 2, - - -, n), as x ranges through a complete
set of ordinary solutions of (2™~!) and, with each such x, y ranges
through a complete (mod p) set of solutions of the congruences for y
obtained by substituting z for the variables in (2™). These con-
gruences are

(11) D> axyi = p, > biyi = o (mod p),
1 1

where p, o are integers dependent on x. The condition that x be not
singular implies that the matrix of the coefficients of y in (11) has
modulo p rank equal to 2; hence, (11) has precisely p*~2? solutions y.
The theorem follows immediately.

In cases where singular solutions occur, formulas for the total num-
ber N(p™) of solutions of (1™) are not yet available except for m=1.
The following theorem, taken with the two preceding, gives explicit
formulae for M(p™) in all cases and for N(p™) in the cases where no
singular solutions occur.

THEOREM 4. The number of singular solutions of (11) is p»+1= in
each of the three cases: (1) v=p-+2, p[r; (ii) v=u-+1, (k(,u)[p)=0;
(iii) v =p, p[ 7, ;b| s. In no other cases have the congruences singular solu-
tions. (Cf. Theorem 2 for definition of £(u) and invariant interpreta-

tion of (£(u)|p).)

We consider congruences (2!). The existence of a singular solution x
implies that of an integer \ satisfying

(127 a:%; = Nbs, i=1,2-,n,
(13) r = Xs (mod p),

where (13) is obtained by substituting Ab; for each a;x; in (2!) which
gives \)_bix;=r, 2 _bax;=s (mod p).

Now let »=u+2. There is a subscript 7>u such that p{b,, p|a..
Formulas (12) and (13) then imply that A=7=0 (mod p). Conversely,
if =0, choosing A=0 determines x;=x,= - - - =x,=0 and leaves x;
arbitrary for ¢ >u; to be a singular solution of (2!), this set must also
satisfy » ", bx;=s (mod p) and these conditions suffice. Thus there
are p"*~! singular solutions.

Let v <u+2. There is no such subscript 7 and (2!) admits precisely
p** times as many singular solutions as (10). But if (%1, %3, - - -, x,)
is a singular solution of (10), (12#) and (13) must be satisfied and
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substitution from (12#) in the linear congruence of (10) yields
Ab(u) +sa(p) =0; this, multiplied by s, gives p|k(u) in view of (13).
If v=u (that is, if pl b(u)), this further implies p| s, pl 7. Conversely let
p| k(u). If pfs, the singular solution of (10) is uniquely determined by
(12#%) and (13); if pls, then by (13) p]r. Taking (%1, %2, - - -, %u)
from (12+), the left members of (10) are congruent respectively to
A2b(u)/a(u) and Ab(u)/a(u). Thus (10) is satisfied by singular solu-
tions in p ways (A arbitrary) if p, b(p) and uniquely (A=0) if p}b(u).

6. Simple applications. It follows simply from this theorem that,
if plk=s%a+rb, then (1') admits no singular solution. (For if p}a, then
pw=n, v=u+1, and k=*%k(u); while if p| a the condition implies pJrb
and hence v=u+2, p}r.) Thus Theorems 1 and 3 give very simple
formulas for N(p™) in this case. Other similar conclusions can easily
be drawn.

Theorem 1 has the following interesting application, pointed out
by Dr. Gordon Pall. Let a;; be a symmetric matrix of integers, of order 3
and with determinant prime to the odd, square-free integer m. Then o
necessary and sufficient condition that two solutions x, y of the congruence

(14) 2 aiikik; = 0 (mod m)
should satisfy
(15) Z aij%:y; = 0 (mod m)

is that x, vy be linearly dependent (mod m).

For, taking m equal to a prime p, the number of simultaneous solu-
tions y of the quadratic congruence (14), with y in place of £, and
the linear congruence (15), for x5£0, is easily calculated by the for-
mula (7;) to be p; and this number is exhausted by the solutions
y=(Ax1, Axs, Ax3) (mod p),A=1, 2, - - -, p. This is easily extended to
m as specified by the Chinese Remainder Theorem.

If we relate integral vectors to the quadratic form with matrix (@;)
and adjoint (4;) by defining norm of x =Y A4 ,xx;, inner product of
x, y=_Aix:y;, it follows (since IA;,«! with |a¢,-| is prime to m) that
a necessary and sufficient condition that two vectors of norm zero (mod m)
be linearly dependent (mod m) is that their inner product be zero (mod
m).
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