QUADRATIC AND LINEAR CONGRUENCE*

R. E. O'CONNOR, S.J.

The number of simultaneous solutions of a quadratic and a linear congruence does not seem to be discussed in the literature, yet a knowledge of the invariants necessary to specify this number should lead to an arithmetical classification of the form-pairs involved. This preliminary investigation is confined to congruences with modulus odd and prime to the g.c.d.'s of the two sets of coefficients. From the formulas obtained, a simple use of the Chinese Remainder Theorem will give the number of solutions for any such modulus which is either square-free or at least whose prime factors of power greater than the first are of a definite class. An interesting application, of a different type from the preceding, is given in §6. Special cases of this and of Theorem 1 have already been proven.†

1. Hypotheses and definitions. We shall be considering the number $N(p^m)$ of simultaneous solutions of the congruences

$$(1^m) f(x) = \sum_{i=1}^n a_{ij} x_i x_j \equiv r, g(x) = \sum_{i=1}^n c_i x_i \equiv s \pmod p^m$$

with f and g integral forms, $n \ge 2$, r and s integers, and p an odd prime dividing neither the g.c.d. of the coefficients of f nor that of g. Defining $\phi(x, t) = f(x) + 2tg(x)$, let a be the determinant of f, μ be the modulo p rank of a, b be the determinant of ϕ , ν be the modulo p rank of b, and $k = s^2a + rb$.

With the above forms are to be associated three others—F(x), G(x) and $\Phi(x, t) = F(x) + 2tG(x)$ —related to the above as follows. By a well known theorem; we can find a linear, integral transformation T of determinant unity that takes f into a form f' which is congruent (mod p^m) to a form

$$F(x) = a_1 x_1^2 + \cdots + a_n x_n^2,$$

where $p \nmid a_1 a_2 \cdots a_{\mu}$, $p \mid a_{\mu+1}, a_{\mu+2}, \cdots, a_n$. The transformation T', identical with T for the variables x and taking t into itself, is also unimodular and takes $\phi(x, t)$ into the form f'(x) + 2tG(x), where

$$G(x) = b_1 x_1 + \cdots + b_n x_n.$$

^{*} Presented to the Society, April 14, 1939.

[†] G. Pall and R. E. O'Connor, American Journal of Mathematics, vol. 61 (1939), pp. 491-496.

[‡] Minkowski, Gesammelte Abhandlungen, vol. 1, p. 14.

Let A be the determinant of F and B the determinant of Φ . If we consider now the congruences

$$(2^m) F(x) \equiv r, G(x) \equiv s \pmod{p^m},$$

the following facts are clear. The prime p divides neither the g.c.d. of the a_i 's nor that of the b_i 's; $A \equiv a$, $B \equiv b \pmod{p^m}$; the modulo p ranks of the matrices of F and Φ are respectively μ and ν ; and the number $N(p^m)$ of solutions of (1^m) is the number of solutions of (2^m) .

A singular solution of (1^m) is a solution ξ such that, for some integer λ (including zero), p divides each of the n integers $\sum_i (a_{ij}\xi_i) - \lambda c_i$ for $i=1,2,\cdots,n$. From the fact that this expression is obtained by setting $t=-\lambda$ in the partial derivative of $\phi(x,t)/2$ with respect to x_i , it is easily seen that the transformation T defines a one-to-one correspondence between the singular solutions of (1^m) and those of (2^m) . Solutions of the congruences which are not singular we shall call ordinary.

2. Inhomogeneous quadratic congruence. We shall need explicit formulas for the number Q of solutions of

(3)
$$\sum_{i=1}^{n} \alpha_{ij} x_i x_j - 2s \sum_{i=1}^{n} \beta_i x_i \equiv c \pmod{p}$$

in several hypotheses.

LEMMA.* Let p be an odd prime; let s, c, α_{ij} (= α_{ji}), and β_{i} , $(i, j = 1, 2, \dots, n)$, be assigned integers; let δ be the determinant $|\alpha_{ij}|$ and δ' the integer $-\sum_{i=1}^{n} A_{ij} \beta_{i} \beta_{i}$, where A_{ij} is the cofactor of α_{ij} in δ .

(41) If $p \nmid s \delta'$, $p \mid \delta$, then $Q = p^{n-1}$.

(42) If $p \nmid \delta'$, $p \mid \delta$, s, then, according as n is even or odd, $Q - p^{n-1} = p^{(n)}((-1)^{(n)}\delta'c \mid p)$ or $p^{(n)}p[c]((-1)^{(n)+1}\delta' \mid p)$.

(4₃) If $p \mid \delta, \dots, then, according as n is even or odd, <math>Q - p^{n-1} = p^{(n)-1}p[\sigma]((-1)^{(n)}\delta|p)$ or $p^{(n)}((-1)^{(n)}\sigma|p)$.

Here (n) in the indices stands for n/2 or (n-1)/2 according as n is even or odd; σ for $\delta c - \delta' s^2$; and p[z] for $p-1-p(z^2|p)$ and hence for p-1 or -1 according as p|z or $p\nmid z$. These formulas are valid for $n\geq 1$, as is evident from the proof except in the case (4_2) with n=1; but for this case (4_2) is easily verified directly.

By the process used to replace ϕ by Φ in §1, we can replace (3) by

^{*}Formulae (4₁) and (4₈) for the case n=2 are given by R. LeVavasseur (Mémoires de l'Académie des Sciences de Toulouse, (10), vol. 3 (1903), p. 39). A confusion of sign in summary on p. 46 has led to a similar confusion in Dickson, *History of the Theory of Numbers*, vol. 2, p. 327.

(5)
$$\sum_{1}^{n} \alpha_{i} y_{i}^{2} - 2s \sum_{1}^{n} \gamma_{i} y_{i} \equiv c \pmod{p},$$

which has the same number of solutions as (3) and where

(6)
$$\alpha_1\alpha_2\cdots\alpha_n\equiv\delta, \qquad \gamma_1^2\alpha_2\alpha_3\cdots\alpha_n+\gamma_2^2\alpha_3\alpha_4\cdots\alpha_n\alpha_1+\cdots+\gamma_n^2\alpha_1\alpha_2\cdots\alpha_{n-1}\equiv-\delta' \pmod{p}.$$

From (6) it is clear that the hypothesis $p \mid \delta$ and $p \nmid \delta'$ implies that p divides exactly one of the α_i 's, say α_n , and that p does not divide the corresponding γ_i , that is γ_n , and consequently that $\delta' \equiv -\gamma_n^2 \alpha_1 \alpha_2 \cdots \alpha_{n-1} \pmod{p}$. Thus in the hypothesis of (4₁) the left side of (5) contains a nonzero linear term, say $2s\gamma_n y_n$, such that the corresponding quadratic coefficient vanishes (mod p). The numbers $y_1, y_2, \cdots, y_{n-1}$ may be chosen arbitrarily and y_n is uniquely determined to satisfy (5).

In the hypothesis of (4_2) , one quadratic and all linear coefficients of (5) vanish (mod p). Let $p \mid \alpha_n$. The number of solutions of (5) is then p times that of $\sum_{1}^{n-1} \alpha_i y_i^2 \equiv c \pmod{p}$. This gives* (4_2) in view of the remark immediately following (6).

To establish (4₃) we can transform (5)—since no α_i vanishes—into $\sum_{1}^{n} \alpha_i z_i^2 \equiv c + Rs^2 \pmod{p}$ by the transformation $y_i = z_i + s\alpha_i \gamma_i$, $(i = 1, 2, \dots, n)$, where α_i is some integer satisfying $\alpha_i \alpha_i \equiv 1 \pmod{p}$. Here R will be $\sum_{i} \alpha_i \gamma_i^2$, so by (6) $R\delta \equiv -\delta' \pmod{p}$. The number of solutions z is then given by (4₃).

3. N(p) for simple invariants. The following theorem is required for the proof of the more general Theorem 2 but in certain applications is more useful than the latter.

THEOREM 1. With the hypotheses and definitions of §1,

- (7₁) if $p \nmid as$, $p \mid b$, then $N(p) = p^{n-2}$;
- (7₂) if $p \nmid a$, $p \mid b$, s, then, according as n is even or odd, $N(p) p^{n-2} = p^{(n)-1}p[r]((-1)^{(n)}a|p)$ or $p^{(n)}((-1)^{(n)}ar|p)$;
- (7₃) if $p \nmid b$, · · · then, according as n is even or odd, $N(p) p^{n-2} = p^{(n)-1}((-1)^{(n)}k \mid p)$ or $p^{(n)-1}p[k]((-1)^{(n)+1}b \mid p)$.

The superior symbol (n) and the symbol p[] are defined in the lemma.

^{*} Here and later we make use of the following theorem: The number of solutions of the quadratic congruence $u_1x_1^2+u_2x_2^2+\cdots+u_nx_n^2\equiv h\pmod{p}$, where p is an odd prime, $p \nmid u = u_1u_2\cdots u_n$, han arbitrary integer and $n \geq 1$, is given by the formula, $p^{n-1}+p^{(n-2)/2}p[h]((-1)^{n/2}u|p)$ or $p^{n-1}+p^{(n-1)/2}((-1)^{(n-1)/2}uh|p)$ according as n is even or odd. Here we have written p[h] for $p-1-p(h^2|p)$ and (z|p) is a Legendre symbol. These formulae were first given by C. Jordan in Comptes Rendus de l'Académie des Sciences, Paris, vol. 62 (1866), p. 687.

Replacing (1¹) by (2¹), we may suppose $p \nmid b_{\tau}$. Solving the linear congruence of (2¹) for x_{τ} and substituting this in the quadratic, we obtain, on multiplying the resulting eliminant by b_{τ}^2 ,

(8)
$$\sum_{i \neq j} (b_{\tau}^{2} a_{i} + b_{i}^{2} a_{\tau}) x_{i}^{2} + a_{\tau} \sum_{i \neq j} b_{i} b_{j} x_{i} x_{j} - 2s a_{\tau} \sum_{i \neq j} b_{i} x_{i} \equiv b_{\tau}^{2} r - a_{\tau} s^{2} \pmod{p},$$

where \sum' indicates that i, j are to be summed over the first n positive integers excluding τ . The number of solutions of (8) will coincide with N(p). The determinant of the quadratic coefficients of (8) is identically $-b_{\tau}^{2(n-2)}B$, as may be seen for example by considering this determinant algebraically, subtracting b_i/b_1 times the first column from the column corresponding to the variable x_i for each $i \neq 1$ or τ , then multiplying every column except the first by b_1 and finally dividing every row except the first by $b_1b_{\tau}^2$. The determinant of the whole left side of (8) considered as a form in variables x, s, which is the determinant corresponding to δ' of lemma, is easily seen to be identically $b_{\tau}^{2(n-2)}(b_{\tau}^2A + a_{\tau}B)$. The formulas (7) are then obtained directly from the lemma, recalling only that $A \equiv a$, $B \equiv b \pmod{p}$.

4. N(p) for unrestricted invariants. We shall write $\chi_i(x)$, $(i=1,\cdots,n)$, for the *i*th concomitant* of a quadratic form $\chi(x)=\chi_1(x)$ and $(\chi_i|p)$ for the quadratic character (mod p) of any integer prime to p represented by $\chi_i(x)$, implying that the character is definitely 1 or -1. If $p\nmid r$, we also define $\psi(x,t)=f(x)+2tg(x)+ct^2$ where c is an integer satisfying $rc\equiv s^2\pmod{p}$. We can then prove

THEOREM 2. The number N(p) of solutions of (1^1) is given in all cases by the following table:

Here (μ) in indices is written for $\mu/2$ or $(\mu-1)/2$, according as μ is even or odd; p[z] is written for $p-1-p(z^2|p)$ and hence for p-1 or -1, according as p|z or $p\nmid z$; $a(\mu)$ is defined below, but $(a(\mu)|p)=(f_{\mu}|p)$; $b(\mu)$ is defined below, but $(b(\mu)|p)=(\phi_{\mu+1}|p)$, if $\nu=\mu+1$; $k(\mu)$ is defined below, but $(k(\mu)|p)$ has the following invariant meaning if $\nu=\mu+1$: if $p\mid r$, $(k(\mu)|p)=(s^2a(\mu)|p)$, if $p\nmid r$, $(k(\mu)|p)=0$ or $(r\psi_{\mu+1}|p)$, according as $p\mid \psi_{\mu+1}(x)$ or $p\nmid \psi_{\mu+1}(x)$. The other symbols are defined in §1.

^{*} Cf. H. J. S. Smith, Collected Mathematical Papers, vol. 1, p. 412.

We may replace (1¹) by (2¹) and define $a(\mu) = a_1a_2 \cdots a_{\mu}$, $b(\mu) = -(b_1^2 a_2 a_3 \cdots a_{\mu} + b_2^2 a_3 a_4 \cdots a_{\mu} a_1 + \cdots + b_{\mu}^2 a_1 a_2 \cdots a_{\mu-1})$, $k(\mu) = s^2 a(\mu) + rb(\mu)$. Recalling that $p \nmid a(\mu)$, $p \mid a_{\mu+1}$, $a_{\mu+2}$, \cdots , a_n , a moment's consideration of the matrix of Φ shows that $\mu \leq \nu \leq \mu+2$ and that the condition $\nu = \mu+2$ is necessary and sufficient for there to be an index $\tau > \mu$ such that $p \nmid b_{\tau}$. Hence, if $\nu = \mu+2$, N(p) is $p^{n-\mu-1}$ times the number of solutions of

$$a_1x_1^2 + a_2x_2^2 + \cdots + a_{\mu}x_{\mu}^2 \equiv r \pmod{p},$$

and taking this number from the note under §2, we have (9₁) valid for $\mu \ge 1$; if $\nu < \mu + 2$, $N(\rho)$ is $\rho^{n-\mu}$ times the number of solutions of

(10)
$$a_1 x_1^2 + a_2 x_2^2 + \dots + a_{\mu} x_{\mu}^2 \equiv r, \\ b_1 x_1 + b_2 x_2 + \dots + b_{\mu} x_{\mu} \equiv s \pmod{p},$$

and we can take this number directly from Theorem 1 since the subcases $\nu = \mu + 1$, $\nu = \mu$ coincide with the conditions $p \nmid b(\mu)$, $p \mid b(\mu)$, respectively. This gives (9_2) , (9_3) and (9_4) for $\mu \ge 2$. If $\mu = 1$ with $\nu = \mu$, every b_i is divisible by p. To prove (9_2) for $\mu = 1$, note that N(p) is p^{n-1} times the number of solutions x_1 of $a_1x_1^2 \equiv r$, $b_1x_1 \equiv s \pmod{p}$ where $p \nmid a_1b_1$; hence, $N(p) = p^{n-1} \{1 - (v^2 \mid p)\}$ where $v = a_1s^2 - b_1^2r$, a formula to which (9_2) reduces for $\mu = 1$.

The statements regarding the invariant values of $(a(\mu)|p)$, $(b(\mu)|p)$ and $(k(\mu)|p)$ may be justified as follows. By definition, $a(\mu)$ is the only nonzero (mod p) determinant of order μ in the matrix of F; $b(\mu)$, in the case $\nu = \mu + 1$, is the only nonzero (mod p) determinant of order $\mu + 1$ in the matrix of Φ ; $k(\mu)/r$, in the case $\nu = \mu + 1$, $p \nmid r$, is a determinant of order $\mu + 1$ in the matrix of $\Psi(x, t) = F(x) + 2tG(x) + ct^2$ while all the other determinants of like order certainly vanish (mod p). Also each of these three determinants is principal. These statements remain true if f' is substituted for F in each of the three forms; but the three forms resulting are equivalent respectively to f, ϕ and ψ . Recalling then that corresponding concomitants of two equivalent forms are likewise equivalent, the statements of the theorem are seen to be correct.

5. **Modulus** p^m . With m > 1 it seems we have to distinguish between ordinary and singular solutions (cf. $\S 1$).

THEOREM 3. With $m \ge 1$, the number $M(p^m)$ of ordinary solutions of (1^m) is $p^{(n-2)(m-1)}$ M(p), where M(p) is the number of ordinary solutions of (1^1) .

We may replace (1^m) by (2^m) . The theorem being clearly true for

m=1, let m>1. Every ordinary solution of (2^m) is an ordinary solution of (2^{m-1}) and hence each of the former is represented just once by $z_i=x_i+p^{m-1}y_i$, $(i=1, 2, \cdots, n)$, as x ranges through a complete set of ordinary solutions of (2^{m-1}) and, with each such x, y ranges through a complete (mod p) set of solutions of the congruences for y obtained by substituting z for the variables in (2^m) . These congruences are

(11)
$$\sum_{1}^{n} a_{i}x_{i}y_{i} \equiv \rho, \qquad \sum_{1}^{n} b_{i}y_{i} \equiv \sigma \pmod{p},$$

where ρ , σ are integers dependent on x. The condition that x be not singular implies that the matrix of the coefficients of y in (11) has modulo ρ rank equal to 2; hence, (11) has precisely ρ^{n-2} solutions y. The theorem follows immediately.

In cases where singular solutions occur, formulas for the total number $N(p^m)$ of solutions of (1^m) are not yet available except for m=1. The following theorem, taken with the two preceding, gives explicit formulae for $M(p^m)$ in all cases and for $N(p^m)$ in the cases where no singular solutions occur.

THEOREM 4. The number of singular solutions of (11) is $p^{n+1-\nu}$ in each of the three cases: (i) $\nu = \mu + 2$, $p \mid r$; (ii) $\nu = \mu + 1$, $(k(\mu) \mid p) = 0$; (iii) $\nu = \mu$, $p \mid r$, $p \mid s$. In no other cases have the congruences singular solutions. (Cf. Theorem 2 for definition of $k(\mu)$ and invariant interpretation of $(k(\mu) \mid p)$.)

We consider congruences (21). The existence of a singular solution x implies that of an integer λ satisfying

$$(12n) aixi \equiv \lambda bi, i = 1, 2, \cdots, n,$$

$$(13) r \equiv \lambda s \pmod{p},$$

where (13) is obtained by substituting λb_i for each $a_i x_i$ in (21) which gives $\lambda \sum b_i x_i \equiv r$, $\sum b_i x_i \equiv s \pmod{p}$.

Now let $v = \mu + 2$. There is a subscript $\tau > \mu$ such that $p \nmid b_{\tau}$, $p \mid a_{\tau}$. Formulas (12) and (13) then imply that $\lambda \equiv r \equiv 0 \pmod{p}$. Conversely, if $r \equiv 0$, choosing $\lambda \equiv 0$ determines $x_1 \equiv x_2 \equiv \cdots \equiv x_{\mu} \equiv 0$ and leaves x_i arbitrary for $i > \mu$; to be a singular solution of (21), this set must also satisfy $\sum_{\mu+1}^{n} b_i x_i \equiv s \pmod{p}$ and these conditions suffice. Thus there are $p^{n-\mu-1}$ singular solutions.

Let $\nu < \mu + 2$. There is no such subscript τ and (21) admits precisely $p^{n-\mu}$ times as many singular solutions as (10). But if $(x_1, x_2, \dots, x_{\mu})$ is a singular solution of (10), (12 $^{\mu}$) and (13) must be satisfied and

substitution from (12^{μ}) in the linear congruence of (10) yields $\lambda b(\mu) + sa(\mu) \equiv 0$; this, multiplied by s, gives $p \mid k(\mu)$ in view of (13). If $\nu = \mu$ (that is, if $p \mid b(\mu)$), this further implies $p \mid s$, $p \mid r$. Conversely let $p \mid k(\mu)$. If $p \nmid s$, the singular solution of (10) is uniquely determined by (12^{μ}) and (13); if $p \mid s$, then by (13) $p \mid r$. Taking $(x_1, x_2, \dots, x_{\mu})$ from (12^{μ}) , the left members of (10) are congruent respectively to $\lambda^2 b(\mu)/a(\mu)$ and $\lambda b(\mu)/a(\mu)$. Thus (10) is satisfied by singular solutions in p ways (λ arbitrary) if $p \mid b(\mu)$ and uniquely ($\lambda \equiv 0$) if $p \nmid b(\mu)$.

6. Simple applications. It follows simply from this theorem that, if $p \nmid k = s^2a + rb$, then (11) admits no singular solution. (For if $p \nmid a$, then $\mu = n$, $\nu \leq \mu + 1$, and $k = k(\mu)$; while if $p \mid a$ the condition implies $p \nmid rb$ and hence $\nu = \mu + 2$, $p \nmid r$.) Thus Theorems 1 and 3 give very simple formulas for $N(p^m)$ in this case. Other similar conclusions can easily be drawn.

Theorem 1 has the following interesting application, pointed out by Dr. Gordon Pall. Let a_{ij} be a symmetric matrix of integers, of order 3 and with determinant prime to the odd, square-free integer m. Then a necessary and sufficient condition that two solutions x, y of the congruence

(14)
$$\sum a_{ij}\xi_i\xi_j \equiv 0 \pmod{m}$$

should satisfy

(15)
$$\sum a_{ij}x_iy_j \equiv 0 \pmod{m}$$

is that x, y be linearly dependent (mod m).

For, taking m equal to a prime p, the number of simultaneous solutions y of the quadratic congruence (14), with y in place of ξ , and the linear congruence (15), for $x \not\equiv 0$, is easily calculated by the formula (7₂) to be p; and this number is exhausted by the solutions $y \equiv (\lambda x_1, \lambda x_2, \lambda x_3) \pmod{p}, \lambda = 1, 2, \dots, p$. This is easily extended to m as specified by the Chinese Remainder Theorem.

If we relate integral vectors to the quadratic form with matrix (a_{ij}) and adjoint (A_{ij}) by defining norm of $x = \sum A_{ij}x_ix_j$, inner product of x, $y = \sum A_{ij}x_iy_j$, it follows (since $|A_{ij}|$ with $|a_{ij}|$ is prime to m) that a necessary and sufficient condition that two vectors of norm zero (mod m) be linearly dependent (mod m) is that their inner product be zero (mod m).

WESTON COLLEGE