
GROUPS OF MOTIONS IN CONFORMALLY FLAT 
SPACES. II 

JACK LEVINE 

1. Introduction. In a previous paper with a similar title,* we have 
shown that all groups of motions admitted by a conformally flat met­
ric space Vn must be subgroups of the general conformai group GN 
of N = %(n + l)(n + 2) parameters generated byf 

(1) (•* = bl + a0#*'+ x{ajXJ — §a^»e/(V)2 + V # ; \ ^ = ± 1. 

In (1), the bf satisfy the relations ejbf +ejbt
J = 0, (ifj not summed). 

Otherwise the a's and ô's in (1) are arbitrary. 
To define a group of motions of Vn, the £* must satisfy the equa­

tions 

dh d? 
(2) £* h h = 0, i not summed, 

dxk dxi 

and the coordinates x{ of (2) are such tha t g*,= e*o/A2. Hence in this 
coordinate system, the metric has the form 

(3) ds2 = h*Y,ei(dx*)*. 

In this paper we shall consider the simplest subgroups of GN, and 
determine the nature of the function h corresponding to each. Also 
we give a restatement of Theorem 2 of I, since it is not complete as 
given. 

2. The group GN. The basis of the group GN may be taken in the 
form 

(4) Pi = Pt, 

(5) Sa = eiXlpj — ejX'pi, i, j not summed, 

(6) U = x*pi, 

(7) Vi = IxWpi - eiej(xt)*pi, 

where £ t =d/3#*; and its commutators are J 

* Groups of motions in conformally flat spaces, this Bulletin, vol. 42 (1936), pp. 
418-422. The results of this paper (which we refer to as I) will be assumed known. 

t All small Latin indices take the values 1, 2, • • • , n, with w>2, unless otherwise 
noted. 

Î S. Lie, Theorie der Transformationsgruppen, vol. 3, pp. 321-334. 
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(8a) (P«, Pi) = 0, 

(8b) (Pit U) = Pi, 

(8c) (Pi} Sih) = eàuPk - etSikP,; 

(8d) (Pi, Vf) = 2ÔiSU - legit, 

(8e) (Sij, Su) = ejSjicSii — ejSjiSu, — eiôtkSji + eiônSjk, 

(8f) (Si}; U) = 0, 

(8g) (Su, Vh) = ei8jkVi - efrkVj, 

(8h) (U, Vi) = Vt, 

(8i) (Vi, V,) - 0. 

The four types of symbols, Pi, Su, U, Vi, will be considered singly 
and in various combinations to form the subgroups to be discussed. 

3. Subgroups of one type of symbol. We consider first the sub­
groups with symbols* 

(a) [P«], (b) [U], (c) [S*], (d) [Va]. 

The notation [Pa] means [Pi, P2 , • • • , P r ] , and similarly for other 
expressions of this nature. Tha t each of (a)-(d) forms a subgroup fol­
lows from (8a), (8e), (8i). 

For (a), we have from (4), £«* = ôa*, and (2), written in the form 

dh d& 
£«fc h h = 0, i not summed, 

dxk dx{ 
becomes 

dh 
(9) — = 0. 

dxa 

Hence (a) : h = h(xr+1, • • • , xn). In case r = n, h is constant, and the 
Vn is flat. 

The finite equations of the group [P«] are 

(10) xfi = a* + aaÔj 

with parameters a". Because of the form of (10), we call this group 
the Tr of translations. However, the group of motions [P a] is not a 
group of translations of the Vn unless h = constant,f tha t is, unless Vn 

is flat. 

* Greek letters take the values 1, 2, • • • , r, with r^n. 
f L. P. Eisenhart, Continuous Groups of Transformations, p. 212. We refer to this 

book as CG. 
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For (b), we have £* = #% and (2) becomes 

dh 
(11) xi = - h. 

dx{ 

Hence h is homogeneous of degree — 1, that is, 

1 /x2 xn\ 
(b) h = -6[ — , • • - , — ) , 

x1 yx1 x1/ 
say, where 0 is an arbitrary function of its arguments. 

The finite equations of the group [U] are xfi = axi
} the group of 

dilations. 
For (c), we find 

i i i /3 

£<*/3 = eahp xa — epöa x , a 9e Pt 

as the vector components of the group [Sap] of %r(r — l) parameters. 
The equations (2) which must be satisfied for each £«£ now become 

dh dh 
(12) Xccfih s= eax

a epxfi = 0, a, (3 not summed. 
dx* dxa 

These equations have as general solution, 

(c) h = h(u; xr+1, • • • , xn), 

where u =^2ea(x
a)2. 

In obtaining this, we use the fact that the system (12) contains 
r— 1 independent equations, since 

eax
aXpy + epx^Xya + eyx

yXa^ = 0, no summing, 

and it is also a complete system.* 
The group [Sap] has the finite equations 

x'a = afx*, x'A = xA, A = r + 1, • • • , n, 

with 

2^ eaa^ay
a = e$py. 

We call this group of \r{r — 1) parameters, the Rr(r-i)/2 of rotations.] 
The vector components for the group (d) are 

U = 2x*x° - eJJR, 

* Goursat, Mathematical Analysis, vol. 2, part 2, p. 270. 
f CG, p. 57, problem 12. 



19391 MOTIONS IN FLAT SPACES 769 

where R=^ei(xi)2. Equations (2) reduce, for this case, to 

dh dh 
(13) 2%«x' eaR h 2hxa = 0. 

dx{ dxa 

If we put \ = xidh/dxi, (13) may be written in the form 

2(X + h) ea dh 
— , a n o^ summed. 

R xa dxa 

Since the left member of this equation is independent of a, we may 
write 

ea dh e$ dh 
xa dxa xfi dx& 

which simplifies to (12), and hence h is of the form for (c). Using this 
form for h in (13), we obtain on reduction, 

dh _ dh 
(14) (u - v) — + E *A — = - *, A = r + 1, • • • , », 

du dxA 

with 

The equation (14) has as solution 

1 /x'+l 

h = — ól ; • • • ; 
R \ R 

In case r = n, h = a/R, with a constant, and the Vn is flat.* 
The finite equations for the group [Va] are j 

x{ — iRôa eaaa 

xfi = 
1 — aax

a + \eae$a£ (x^)2 

4. Subgroups with two types of symbols. We consider in this sec­
tion the simplest subgroups with two types of symbols. These are: 

(e) [Pa,S,y], (f) [P..U], (g) [S«,U], 

00 [v.,u], (i) [saP,vy]. 
Each of these we discuss briefly. 
(e). The function h has the same form as for (a) since equations 

(12) are satisfied identically if (9) are. 

* L. P. Eisenhart, Riemannian Geometry, p. 85. 
t Lie, loc. cit., p. 350. 

R • 
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(f). Using the form of h for (a) in (11), we see that h is homogene­
ous of degree — 1 in x r+1, • • • , xn, tha t is, we may write 

1 /%*+* 

x1*1 \ffr+1 * 

If r = n, there is no solution, 
(g). If we substitute for h in (11) its value as determined from (c), 

we obtain 

dh dh 
(15) 2u h xA ^— = - h, A = r + 1, • • • , n. 

du dxA 

Hence, 

1 / xr+1 

fa — Af , . . . ; 

(h). Equations (11) and (13) show dh/dxa = 0, so that h is the same 
as in (f). If r = n, there is no solution. 

(i). For (d), we have seen that (13) imply (11), that is, the form of 
h for (i) is the same as that for (d). 

5. Subgroups with three and four types of symbols. Of the four 
possibilities [P«, Spy, V$], [Pa, Spy, U], [P«, Vp, U], [Sapt Vyj U], 
only the second and fourth give subgroups: 

(j) [Pa,Sfiy,U], (k) [Sa$,Vy>U). 

For (j), the P a , Spy imply h — h{xr+l, • • • , x11), and then Ushows h 
is the same form as in (f). There is no solution of r = n. 

The form of h for (k) will be the same for (h), as follows from (i), 
tha t is, h will have the same form as for (f). If r = n, there is no solu­
tion. 

The simplest four type symbol subgroup is 

(1) [Pa,V,,Syt,U). 

I t is easily seen that the solution for h is the same as for (f), and 
there is no solution for r = n. 

6. Indices in different ranges. So far, we have considered only sub­
groups whose symbol indices all have the same range, 1, • • • , r. In 
this section we discuss cases (e), (i), (j), (k), and (1) with the indices 
for the various types of symbols in different ranges. 

Case (m) : [Pt-, S,-k]. Let i range through 1, • • • , r, a n d j , k through 
any set of / indices, su s2, • • • , st, with Si<s2 < • • • <st. Then either: 

xn \ 
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(mi) st S r, (m2) si ^ r, st > r, (m3) sx > r. 

For case (mi), equations (9) imply (12) with ce, /3 in the range 
Su S2, - - - , st. Hence h has the same form as in (a). 

In the second case, (m2), there must be a common index in 
(1, • • • , r) and ($i, • • • , st), say /?. Then, in (8c), choose i=j = l3, 
and k = st. This gives 

(Pp, Sp8>) = epPS'> sf = st, 

which is not in the set [P«]. Hence, this case is impossible. 
For case (m3), the two sets of indices have no index in common, 

and we must have t^2. Without loss of generality, we may take the 
set Si, - - • , st to be r + 1 , r + 2 , • • • , r+t. The form of h is easily seen 
to be 

r+t 
h = h(vt; %r+t+1, • • • , xn), vt = X) ej(xJ)2. 

r+l 

Case (n): [Sjk, Vi]. As in case (m), there are three possibilities, 
only the first and third being possible. If we let i take the range 
1, • • • , rf then if st^r, h has the same form as for (d). If Si>r, we 
may let j , k have the range r + l , • • • , r+t. Then h must satisfy (13), 
and (12) with the indices in this latter range. Since (13) implies (12), 
we must have h = h(u; vt', xr+t+1, • • • , xn). Using this form for h in 
(13), we obtain 

dh dh dh 
(u — w) h vt h xB = — h, B = r + t + 1, • • • , n, 

du dvt dxB 

with w=YLeB{xB)2. This equation has as solution 

1 / vt xr+t+1 xn \ 
h = <M ; ; • ; ). 

R - vt \R- vt R- vt R- vt/ 
With three types of symbols, we consider first [P*, Sjk, U], and let 

i = l, • • • , r. If the indices of Sjk are all contained in the range 
1, • • • , r, h has the same form as for [Pa , U]. Otherwise, we must 
have all j , k indices outside the range 1, • • • , r. Then we have: 
(o) [Pa, SJK, U]y and h = h(vt; xB)t using the notation of case (n). 
With this value of h in (11) we obtain equation (15) with u replaced 
by vt. Hence, 

1 /xr+t+l xn\ 
h = <M ; • • -, ). 

Vt112 \ Vt112 Vt112/ 

As the next case we consider [Va, Sjk, U], If the j , k indices are 
included in 1, • • • , r, we get the same form for h as in [Va, U]. If not 
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we must have7, k in the range / , K, to give: (p) [Va, SJK, U]. The 
symbols Va, U imply h — h{xr+l, • • • , xn), and then the symbols SJK 
imply h = h(vt; xB), the same as in (o). 

The other two possibilities [Pt-, Sjk, Vi], [P», Fy, £7] are easily 
shown to be impossible, no matter in what ranges we choose the in­
dices of the various symbols. 

For four types we have [P«, Sjk, Vh U]. If j , k are in the J , K 
range, we have a contradiction from (P a , Vi), no matter what range / 
has. The only other choice is j , k included in the 1, • • • , r range. 
Then, from (P«, Vi), we must have 7 in this range also. This gives 

(q) [̂ «> Saw, Vy>, U], a', P', y' range included in 1, • • • , r, 

and h has the same form as for (f), as easily follows. 

7. Summary. We give here a summary of the various forms for h 
corresponding to the subgroups considered. 

(a) [Pal 

(b) [U], 

(C) [Safi], 

(d) [V*], 

(f) [Pa, U], 

(g) [s*, u], 

(m3) [Pa, Su], 

h = h(xr+l, - • • , xn); 

1 (x2 xn\ 

X1 \Xl X1/ 

h = h(u; xr+1, • • • , xn)\ 

1 / xr+1 xn\ 

jR \ ie R) 

1 / # r + 2 xn \ 
h = <t>[ > • • • ; ) , r = 

1 / xr+1 xn \ 
h = </>[ > • • • , J : 

u1'2 W ' 2 u1'2/ 
h = h(u; xB); 

n, no solution 

(m) [ F « , 5 „ ] , A = - *(•—— ',-——)> 
R — vt \R — vt R — vt/ 

(o8) [ p . , 5 „ , 17], * - - ! # ( — ) ; 

(e) [ i '« ) 5j T ] , and (mi) [Pa, Sp>7>], h as in (a); 

(i) [Safi, Vy], and (ni) [Va, Sp>y>], ^as in (d) ; 

(h) [Va,U], (j) [Pa,Sf7,U], (k) [S«,V7,U], 

(1) [P a , 7 , , Syh U], (0l) [ P . , 5 , ^ , 17], 

(Pi) [V., - W , U], (q) [V.,S,.v.,Vt.,U], 
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all have h as in (f) ; 

(ps) [Va, Su, U], has in (o3). 

In the above summary we have used the following notation : 

R = E *<(*¥, * = E *«(*a)2> * = E *r(*')2, 
i = l, • • • , w; Greek letters have the range 1, • • • , r; I, J = r+1, • • • , 
r+t; A=r+1, - - - , n; primed Greek letters have a range contained 
within 1, • • • , r'; B = r+t+l, • • • , n. 

8. Restatement of Theorem 2 of I. In the proof of this theorem, 
the possibility ao = bi = ai = 0 was omitted. In this case, £* has the form 
£* = &/#', a n d the function ƒ (J?) is arbitrary. The group for this case 
is evidently the rotation group [5»,-] of \n{n — \) parameters. It is 
not difficult to show that the subgroups corresponding to the two cases 
mentioned in the theorem are [cetPi+Vi, Sjk] for f(R) = (aR+(3)2 

and [Sa, U] forf(R) =aR. We may thus state the corrected theorem 
in the form : 

THEOREM. Every metric space with quadratic form E^(^#0V/CR) 
admits the rotation group [S^] as a group of motions. The only metric 
spaces with this quadratic form which admit other groups of motions are 
spaces of constant curvature, and f has the form f (R) = (OLR+/3)2, and the 
group is [ce{Pi+ F», Sjk], and spaces with f (R) =aR, in which case the 
group is [Sij, U]. 

NORTH CAROLINA STATE COLLEGE 


