GROUPS OF MOTIONS IN CONFORMALLY FLAT
SPACES. II

JACK LEVINE

1. Introduction. In a previous paper with a similar title,* we have
shown that all groups of motions admitted by a conformally flat met-
ric space V, must be subgroups of the general conformal group Gy
of N=3%(n+1)(n+2) parameters generated by

¢)) £ = b+ aext+ xiax’ — Jaieiei(x)? + biixd, e =+ 1.

In (1), the b satisfy the relations ;b +e;b7 =0, (4, j not summed).
Otherwise the a¢’s and b’s in (1) are arbitrary.
To define a group of motions of V,, the & must satisfy the equa-
tions
oh &t

—+ k2 — =0, 7 not summed,
dx*® dxt

©) g

and the coordinates x? of (2) are such that g;;=e;6/ 42 Hence in this
coordinate system, the metric has the form

3) dst = k2 el(dai)2.

In this paper we shall consider the simplest subgroups of Gy, and
determine the nature of the function % corresponding to each. Also
we give a restatement of Theorem 2 of I, since it is not complete as
given.

2. The group Gy. The basis of the group Gy may be taken in the
form

4) P; = pi,

(5) Sii = exip; — eixips, i, § not summed,
(6) U = xps,

) Vi = 2xixip; — ee;(x7)2ps,

where p;=0/0dx%; and its commutators are]

* Groups of motions in conformally flat spaces, this Bulletin, vol. 42 (1936), pp.
418-422. The results of this paper (which we refer to as I) will be assumed known.

t All small Latin indices take the values 1, 2, - « + , #, with #>2, unless otherwise
noted.

1 S. Lie, Theorie der Transformationsgruppen, vol. 3, pp. 321-334.
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(8a) (P, Py) =0,

(8b) (P.~, U) = P,

(8¢) (Piy Six) = €diiPr — exdirPj,

(8d) (Psy Vi) = 266U — 2¢;S4,

(8e) (Sijy Skr) = e0iuSst — €0 Ser — edinS it + edurS i,
(8f) (Sii, U) =0,

(8g) (Ssi, Vi) = edixVi — edanV i,

(8h) (U, Vi) =V,

(8i) Vs, V;) = 0.

The four types of symbols, P;, S;;, U, V;, will be considered singly
and in various combinations to form the subgroups to be discussed.

3. Subgroups of one type of symbol. We consider first the sub-
groups with symbols*

(a) [Pa] ’ (b) [U] ’ (C) [Saﬂ] ’ (d) [Vd] .

The notation [P,] means [Py, Py, - - -, P,], and similarly for other
expressions of this nature. That each of (a)-(d) forms a subgroup fol-
lows from (8a), (8e), (8i).

For (a), we have from (4), £f =4/, and (2), written in the form

oh Okd ,
& —+hr— =0, 2 not summed,
dx* dxt
becomes
© o
x> B
Hence (a): h=h(x™t1, - - - , x"). In case r =m, h is constant, and the
V. is flat.
The finite equations of the group [P,] are
(10) &' = at 4+ a%d

with parameters a*. Because of the form of (10), we call this group
the T, of translations. However, the group of motions [P,] is not a
group of translations of the V, unless % =constant,? that is, unless V,
is flat.

* Greek letters take the values 1, 2, - - -, 7, with r<#.
t L. P. Eisenhart, Continuous Groups of Transformations, p. 212. We refer to this
book as CG.
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For (b), we have £ =x7 and (2) becomes

Ok
11) xt——= — k.
axt

Hence % is homogeneous of degree —1, that is,

1 x? x"
(b) h=;;¢(;;"“’;>,

say, where ¢ is an arbitrary function of its arguments.

The finite equations of the group [U] are x’¢=ax?, the group of
dilations.

For (c), we find

gaﬂ = eaaﬂi x* — eﬁai xﬂ) o # ﬁr
as the vector components of the group [Seg] of §7(r—1) parameters.
The equations (2) which must be satisfied for each £33 now become
ok Ak

— e —— =
Py egx Py 0, a, 8 not summed.

(12) Xaﬂh = equ%”

These equations have as general solution,
(C) h = h(u; xr+1, Y x”)’

where u = _eq(x%)2.
In obtaining this, we use the fact that the system (12) contains
r—1 independent equations, since

eax%Xpgy + €0 X yo + 427X o5 = 0, no summing,

and it is also a complete system.*
The group [S.s] has the finite equations

x'e = g %P, x4 = x4, A=r+1,---,n,
with
Z alf Qs = €glpgy.

We call this group of 37(r —1) parameters, the R,z of rotations.}
The vector components for the group (d) are

£d = 2x'x* — e 0f R,

* Goursat, Mathematical Analysis, vol. 2, part 2, p. 270.
t CG, p. 57, problem 12.
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where R=Y_e(x%)2. Equations (2) reduce, for this case, to

] oh
(13) 2x2xt — — e,R — + 2hx* = 0.
dxt 9x*

If we put A=x9%4/dx%, (13) may be written in the form
AN+ 1K) ea Oh

’ o not summed.

R x® Jx*

Since the left member of this equation is independent of &, we may
write

which simplifies to (12), and hence % is of the form for (c). Using this
form for % in (13), we obtain on reduction,

1] dh
(14) (u—v)——l—ZxA_:—h, A=7+1’...’n,
ou x4
with
v =) es(x4)2.
The equation (14) has as solution
1 xﬂ'l xn
h:—-—¢<_, ceey ._.).
R R R

In case r=n, h=a/R, with a constant, and the V, is flat.*
The finite equations for the group [V.] aret

" %' — R0y €alla
¥ = .
1 — a.%® 4+ Leqepas? (xP)?

4. Subgroups with two types of symbols. We consider in this sec-
tion the simplest subgroups with two types of symbols. These are:

(e) [Pa, Sﬂ"l]’ (f) [Pa, U] ’ (g) [Saﬂy U])
() [Va, U], (@) [Sas Vsl

Each of these we discuss briefly.
(e). The function % has the same form as for (a) since equations
(12) are satisfied identically if (9) are.

* L. P. Eisenhart, Riemannian Geomeiry, p. 85.
1 Lie, loc. cit., p. 350.
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(f). Using the form of % for (a) in (11), we see that % is homogene-
ous of degree —1 in x7*!, . - . | x», that is, we may write

1 x7‘+2 xn
h = ¢ R .
xTH1 2Tl g1

If »=mn, there is no solution.
(g). If we substitute for % in (11) its value as determined from (c),
we obtain

(15) 24— + x4 — = — I, A=r+41,---, 0.

1 xr+1 x"
h=—2¢ ) .
ul/? ullz u1/2

(h). Equations (11) and (13) show 04/dx>=0, so that % is the same
as in (f). If »=mn, there is no solution.

(i). For (d), we have seen that (13) imply (11), that is, the form of
h for (i) is the same as that for (d).

Hence,

5. Subgroups with three and four types of symbols, Of the four
possibilities [Pa, Sy, Vs, [Pay Sors Ul, [Pay Visy Ul [Sas, Vi, Ul,
only the second and fourth give subgroups:

(j) [Pu, Sﬁ'n U]’ (k) [Saﬁy V'Y, U]'

For (), the P., Sgy imply A=h(x"*!, - - - , x"), and then U shows %
is the same form as in (f). There is no solution of 7 =n.

The form of & for (k) will be the same for (h), as follows from (i),
that is, 2 will have the same form as for (f). If r=#, there is no solu-
tion.

The simplest four type symbol subgroup is

(1) [de Vﬂ; S‘ﬁ: U]'

It is easily seen that the solution for % is the same as for (f), and
there is no solution for r=n.

6. Indices in different ranges. So far, we have considered only sub-
groups whose symbol indices all have the same range, 1, - - -, 7. In
this section we discuss cases (e), (i), (§), (k), and (1) with the indices
for the various types of symbols in different ranges.

Case (m): [P;, Siz]. Let i range through 1, - - -, 7, and j, k£ through
any set of ¢ indices, s, Sz, - * + , S¢, with §1<s2 < + - - <s;. Then either:
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m) s, mg) si=r, s>, (m3g) s3> 7.

For case (m;), equations (9) imply (12) with «, 8 in the range

s1, S, - -+, $3. Hence & has the same form as in (a).
In the second case, (m:), there must be a common index in
@,---,7)and (s1, - - -, s¢), say B. Then, in (8c), choose 1=7=0,

and k=s,. This gives
(Pﬂ; Sﬂs’) = eﬁPS’) s' = Sty
which is not in the set [P,]. Hence, this case is impossible.

For case (mj3), the two sets of indices have no index in common,
and we must have ¢t = 2. Without loss of generality, we may take the

set sy, - -+ ,s;tober+1,7r+2, - - -, 74+£ The form of % is easily seen
to be
r+t
o= (g a1 - o xm), g = z er(x9)2.
r+1

Case (n): [Sj, Vi]. Asin case (m), there are three possibilities,
only the first and third being possible. If we let 7 take the range

1,-- ., r, then if s;=<7, & has the same form as for (d). If s;>7, we
may let j, k have the range 741, - - - , 7-+¢. Then % must satisfy (13),
and (12) with the indices in this latter range. Since (13) implies (12),
we must have h="h(u; v;; x™+t+1 . . . | x7). Using this form for % in
(13), we obtain
dh dh
(u—w) -I—vt——-i— xB — = — b, B=r+t+1,---,n,
av; dxB

with w=ZeB(xB)2. This equation has as solution

1 < vy el x" >
b= é ; e .
.R—‘Z)t .R""Ut R—vt R—vg

With three types of symbols, we consider first [P;, Sjz, U], and let

2=1, ..., r. If the indices of Sj are all contained in the range
1, - -, 7, &k has the same form as for [P., U]. Otherwise, we must
have all j, & indices outside the range 1,:--, . Then we have:

(0) [Pa, Ssx, U], and k=h(v;; x&), using the notation of case (n).
With this value of % in (11) we obtain equation (15) with % replaced

by v.. Hence,
1 grtitl xn
h=—o¢(—> - .
il ¢ o2 " oAl

As the next case we consider [V,, Sji, U]. If the j, % indices are
includedin 1, - - - , 7, we get the same form for Zasin [V,, U]. If not
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we must have j, k in the range J, K, to give: (p) [Va, Ssx, U]. The
symbols V,, U imply k=h(x"*!, - - - , ), and then the symbols S;x
imply h="h(v; xB), the same as in (0).

The other two possibilities [P;, Si, Vil, [P:, Vi, U] are easily
shown to be impossible, no matter in what ranges we choose the in-
dices of the various symbols.

For four types we have [P., Sy, Vi, Ul. If j, k are in the J, K
range, we have a contradiction from (P,, V;), no matter what range/
has. The only other choice is j, k included in the 1, - - -, 7 range.
Then, from (P., V), we must have / in this range also. This gives

(Q) [Va) Sa’ﬂ'; V‘Y’: U],

and % has the same form as for (f), as easily follows.

o, B/, v’ range included in 1, - - - , 7,

7. Summary. We give here a summary of the various forms for %
corresponding to the subgroups considered.

(a') [Pa]: = h(xr+1, Ty x”);
1 x2 x™
®) [U], k=—1¢<——1-;-~,——1>;
x x x
(C) [Saﬂ]’ h = h(ua xr+1’ Y xn);
@ [v] = s(S )
b “"R°\rR’ 'R/
1 xr+2 x™
) [Pa., U], h = - qb( e —-J:—),r=n,nosolution;
X" X" X"
1 xr+1 x"
(g) [Svtﬁ) U]’ h = ;1_/_2 ¢<u1/2 roen ;17;)’
(m3) [PM SIJ]7 = h(“: xB);

(ng) [V S,

(08) [Pa; SIJ; U]3 h

(e) [Pa’ Sﬂ‘r];
(i) [Saﬂ7 V‘Y] ’

) [V, U],

(1) [Pay Vﬂ) S‘Yﬁ’ U]) (01)
(pl) [Va; Sﬁ”r” U],

P 1 ¢< V4 x3>
_R—v, R—vt’R—"Dg’

1 xB
=-—————¢<.._._ .

p A2 pr2)’
and (my) [P, Sgryr], hasin (a);
and  (n1) [V Seryr], % asin (d);

(j) [Pay Sﬂ’n U]) (k) [Saﬁ; V‘Y: U])
[Pa: Sﬁ"r’) U]’

(Q) [Va’ Sﬂ'v’: V") U]7
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all have % as in (f);
(p3) [Vd, S, U]; k asin (03) .
In the above summary we have used the following notation:

R= e, u= en??, =2 erah)?,

2=1, -+, n;Greek letters have therange 1, - - - ,7; I, J=r41, - - -,
r+t; A=r+1, - - -, n; primed Greek letters have a range contained
within 1, - - -, 7; B=r+¢t+1, - - -, n.

8. Restatement of Theorem 2 of I. In the proof of this theorem,
the possibility ao=>0*=a;=0 was omitted. In this case, £ has the form
i=pix7, and the function f(R) is arbitrary. The group for this case
is evidently the rotation group [Si;] of in(n—1) parameters. It is
not difficult to show that the subgroups corresponding to the two cases
mentioned in the theorem are [ce;P;+ Vi, Si] for f(R) = (aR+pB)?
and [Ssj, U] for f(R) =aR. We may thus state the corrected theorem
in the form:

THEOREM. Every metric space with quadratic form Y _e;(dx?)2/f(R)
admits the rotation group [Si;] as a group of motions. The only metric
spaces with this quadratic form which admit other groups of motions are
spaces of constant curvature, and f has the form f(R) = (aR+B)2, and the
group is [ce;Pi+ Vi, Sit), and spaces with f(R) =aR, in which case the
group is [Sij;, Ul.

NoRrRTH CAROLINA STATE COLLEGE



