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The surface of an ordinary (circular) half cone is frequently em­
ployed as an illustration of a surface on which parallel displacement 
of a vector around a closed circuit may produce a change in the vec­
tor. It may appear at first sight that the reason for this is related to 
the fact that the circuit in question encircles the vertex of the cone 
and the vertex is in some sense a singular or exceptional point. But 
this cannot be correct since we can remove the vertex from the sur­
face under consideration without effecting the parallel displacement 
of the vector. If it is then argued that the resulting surface is not 
simply connected and that the above phenomenon depends on the 
fact that the circuit along which the vector is displaced cannot be 
shrunk to a point, we can offset this by smoothing out the surface in 
the neighborhood of the vertex so that it becomes a continuous, dif­
ferent iate , and simply connected surface (which is evidently possi­
ble). Clearly then, such considerations do not provide us with the 
inner reason as to why the parallel displacement of a vector around 
certain closed circuits on the surface yields the original vector while 
for other circuits a different vector is obtained as result of the parallel 
displacement. 

A satisfactory answer to the above question is contained in a gen­
eral theory of the parallel displacement of vectors in an afiinely con­
nected space by Mayer and Thomas, Fields of parallel vectors in non-
analytic manifolds in the large, Compositio Mathematica, vol. 5 
(1938), pp. 193-207. It can be shown that an afiinely connected space 
of class Cr, where r^n + 1 and n is the dimensionality of the space, 
breaks up in virtue of its intrinsic nature into a finite or infinite num­
ber of open point sets K, called components, with each of which 
there is associated a definitely determined integer m having a value 
from zero to n inclusive. Denote by Km any component K for which 
m is the associated integer. Then any open, connected, and simply 
connected point set O c Km admits exactly m independent fields of 
parallel vectors. The definition of the components K is as follows: 
Consider the set of equations 

(E0)£ Btfy — 0; CEi)£ B^y^x = 0; • • • ; (En)£ B^7t8lt.,.,sn = 0 

as equations for the determination of the n quantities £", the co-
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efficients B being the components of the curvature tensor and its 
successive covariant derivatives. We shall say that a point P of 
the space is a regular point with respect to the system (E 0 )+ • • • 
+ (Et) if there exists a neighborhood U(P) in which the rank 
of the matrix of the coefficients B of this system is constant. Other­
wise the point P will be said to be singular with respect to the 
above system. I t is easily demonstrated that the set of singular 
points so defined is nowhere dense in the space. Denote by 
Rn-i the set of all points regular with respect to the system 
( E 0 ) + • • • + (E n _i ) . A component K = K(P) is defined as the great­
est open connected point set in Rn-i which contains P. Evidently 
K(P)=K{Q) if QcK(P). I t can be shown that the matrix of the 
system (E0)+ • • • +(E n _i) has a constant rank in any component 
K(P). If the rank of this matrix is p in K(P), then this component 
K(P) is one of the above components Km where m = n — p. I t is fur­
thermore proved in the above paper that if Q is any point in the 
above point set O c Km and if £Q is any solution vector of the system 
( E 0 ) + • • • +(E n _i) at Q, then a field of parallel vectors is generated 
in O by the process of parallel displacement of the vector £Q to the 
various points of the set O. Taking m independent solution vectors 
£QX» • * * > ?Qm a t Qi w e thus obtain the existence of m independent 
fields of parallel vectors in O as above stated. 

In the case of the cone with vertex deleted, we have a (locally) flat 
affine space which falls under the above general theory. This space 
contains only one component Km so that there exist n independent 
fields of parallel vectors in any of the open point sets O ; hence if any 
vector is displaced by parallel displacement around a circuit lying en­
tirely in 0, it will return to the original vector. If, on the other hand, 
the circuit is not contained in a simply connected region 0, the origi­
nal vector need not be obtained as a result of the parallel displace­
ment. If we smooth out the cone at the vertex so as to obtain a 
simply connected space of class Cr, this space must contain in addi-
dition to the component Kn at least one component Km where m^n. 
Otherwise, we would have a contradiction with the fact that there 
exist circuits about which the parallel displacement of a vector does 
not yield the original vector. 

When the affinely connected space is analytic, the components K 
into which the space breaks up in accordance with the above general 
theory lose their real significance. Indeed, the entire space in the 
analytic case appears to play the same role as the various compo­
nents K under the non-analytic hypothesis. See Thomas, Fields of 
parallel vectors in the large, Compositio Mathematica, vol. 3 (1936), 
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pp. 453-468. The fact that the various components K which may 
exist in an analytic affinely connected space are without especial sig­
nificance in the theory of the parallel displacement of vectors in this 
space is an objection to the above definition of these components. It 
is the primary purpose of the following paper to modify the definition 
of the components K of an affinely connected space so as to eliminate 
all nonessential components at least as far as this is possible in view 
of the continuity and differentiability properties which we have at 
our disposal. As a consequence of this new definition, an analytic 
affinely connected space will be without singular points and hence 
(if topologically connected) will contain only one component which is 
in strict conformity with the above mentioned character of the analy­
tic space. 

Let S be an affinely connected space of class Cu. If u is a finite 
integer, this means that the components of the affine (or linear) con­
nection L are continuous and have all continuous derivatives to the 
order u inclusive; if u= oo, the components of the affine connection 
are continuous and have all continuous partial derivatives without 
exception; and if u = o), these components are analytic functions of 
the coordinates of the various admissible coordinate neighborhoods 
by which the space is covered. 

If u is a finite integer, we put u — r + 2 and assume r ̂  n — 1, where n 
is the dimensionality of the space, so that we can construct the sets of 
equations (E0), (Ei), • • • , (Er), (Er+i) which correspond to and in-
include those above considered. In the case of a space of class C°° or 
Cœ (analytic affinely connected space) the infinite sequence of equa­
tions (£o), (-Ei), (£2), • • • can be constructed over the space. De­
note by M the matrix of the system (E 0 )+ • • • + (Er) for the 
space of class Cr+2 and the (infinite) matrix of the system 
(Eo) + (Ei) + (E2) + - - - in the case of an analytic space or space 
of class C00. 

We shall say that a point P of 5 is regular if there exists a neighbor­
hood U(P) in which the rank of the above matrix M is constant. 
Otherwise P will be said to be a singular point. Denote by R the set 
of all regular points in S. By a component K(P) we shall mean the 
greatest open connected point set in R which contains the point P . 
Then K(P) =K(Q) if Q c K(P). It can be shown that if P is any regu­
lar point of a space 5 of class Cu for which u = r-{-2 is finite, then the 
system (Er+i) can be expressed linearly and homogeneously in 
terms of the systems (-Eo), • • • , (Er) in some neighborhood U(P)t 

the coefficients in these expressions being continuous functions of the 
coordinates of U(P). When 5 is an analytic space or space of class 
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C00, it is immediately evident that there exists a neighborhood U(P) 
of any regular point P in which the system (Et), for some value of 
the integer t, can be expressed linearly and homogeneously in terms 
of the systems (E0), • • • , (Et-i) with coefficients which are analytic 
or functions of class C00, respectively, of the coordinates of U(P). 
On the basis of the procedures which are employed in the paper by 
Mayer and Thomas (loc. cit.), the following two theorems can be 
established. 

THEOREM I. The rank of the matrix M is contant in any component 
of the space 5. 

THEOREM I I . If pis the rank of the matrix M in a component K of an 
affinely connected space S of class Cu and if O is any open, connected, and 
simply connected point set in K, then there are exactly n—p independent 
fields of parallel vectors in O and these fields can be generated by the 
parallel displacement to the various points of O of the n—p independent 
solution vectors, at any point QcO, of the system (E0) + • • • +(Er) if 
u = r+2 and r*tn — l is a finite integer where n is the dimensionality of 
the space S, or of the infinite system (E0) + (Ei) - ( - • • • if the space S is 
analytic or of class C°°. 

I t is easily seen that any component on the basis of the previous 
definition is contained entirely in one of the components which enter 
in the above theorems. Also points which were singular, as previously 
defined, may become regular points as a result of the modified defini­
tion; and in consequence of this, two or more of the components (as 
previously defined) may merge into a single component. We shall 
show that in the case of an analytic space this merging is complete; 
that is, there exists only a single component K in any (topologically 
connected) analytic affinely connected space. 

Let P be any point of an analytic space S at which the matrix 
M has rank p<n. Let § be any solution vector of the system 
(JSo) + (Ei) + • • • at P . Let C(t), where 0 ^ / ^ 1, be an analytic curve 
joining the point P to any other point Q such that P = C ( 0 ) and 
Q= C(l), which is always possible if S is topologically connected. See 
Thomas, Arcs in affinely connected spaces, Annals of Mathematics, 
(2), vol. 38 (1937), pp. 120-130. Displace the vector £ at P by parallel 
displacement along C(t) to obtain an analytic vector £(/) defined 
along the curve C. Along C we may then define the analytic following 
functions 

Pfiy(f) — ? ( 0 ^ 7 9 Fpyà(t) = £ (t)Brfy,d, ' ' ' 
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all of which vanish at P , that is, at t = 0, by the above hypothesis. It 
follows immediately that the successive absolute derivatives of the 
tensors F all vanish at P ; that is, 

D D a D D a 

_ . . . - ^ ( o ) - o , - . . . - z w o j - o , . . . . 

From the first set of these equations it can easily be shown that all 
the absolute extensions of the first tensor F vanish at P , from the sec­
ond set of these equations all the absolute extensions of the second 
tensor F vanish at P , and so on; that is, 

DmFÏy(0) DmFw(0) 
= 0, = 0, • • • , m = 1, 2, 3, • • • . 

Dtm Dtm 

The definition of the absolute derivative is, of course, well known, but 
the definition of the mth absolute extension is perhaps not well 
known. Let us note, therefore, that the above mth absolute extensions 
are defined in the following manner: Introduce normal coordinates ya 

in a neighborhood of the point P . Denote, for example, the compo­
nents of the first of the above tensors F by fpy(t) with respect to the 
normal coordinate system. Then 

rz^i = rd f0y l 
L Dtm ]P L dtm J P ' 

where the right-hand member contains the ordinary mth derivative 
of the components /^(Z), and a similar definition applies in the case 
of any tensor. I t follows, therefore, that the successive coefficients 
in the power series expansions of the components of each of the 
tensors F vanish at / = 0; and since these components are analytic 
functions of / along the entire curve C(t), they must vanish along 
this curve; that is, in the interval O^t^l. In particular, we have 
^ ( l ) = 0 ) Fpyo(l)=0, • • • ; that is, by parallel displacement of the 
solution vector f of the system (E0) + (Ei)+ • • • at P along the 
analytic arc C joining P to Q, we obtain a vector £' at Q which is also 
a solution vector of this system. Since independent solution vectors 
of the above system at P (or Q) remain independent under parallel 
displacement along the curve C joining P and Ç, it follows that the 
matrix M has the same rank at P as it has at the point Q. In other 
words, the space S contains no singular points. 

THEOREM I I I . An analytic affinely connected space S can contain no 
singular points. 
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THEOREM IV. An analytic affinely connected space S which is topo-
logically connected contains only a single component K. 

Let M' be the matrix of the system (E 0 )+ • • • + (£n- i ) , and 
denote by Rm = 0> where m = l, • • • , n, the equations obtained by 
equating to zero all determinants of order n — m + 1 in the matrix M'. 
Let 5 be an affinely connected space of class O , and suppose that 
the conditions Rm = 0 are satisfied over 5, where m has one of the 
above values 1, • • • , n. Let K be any component of S. Since the 
set of points in 5 which are singular with respect to the system 
(Eo) + • • • + O^n-i) is nowhere dense, it follows that there is a point 
P c K which is regular with respect to this system. Then there exists 
a neighborhood U(P) in which M' has a constant rank p, such that 
the (En) are expressible linearly and homogeneously in terms of 
(£o), • • • , (En-i) with coefficients which are functions of the 
coordinates of U(P). For a finite value of u = r + 2, these coeffi­
cients will be functions of class Cr~n+l. By differentiation of these 
relations, it is therefore possible also to express each of the sets 
(En+i), • • • , (Er+i) linearly and homogeneously in the (Eo), • • • , 
(En-i) with coefficients which are continuous functions of the co­
ordinates of U(P). Hence the matrix M has the constant rank p in 
U(P). Hence P is a regular point of the space 5 as defined in §2. 
Similarly, if S is analytic or of class C00, it follows that the matrix M 
has the rank p in U(P) and hence that P is a regular point in accord­
ance with the definition of §2. But p^n — m in consequence of the 
assumption that Rm = 0 over 5. Hence the matrix M has a constant 
rank less than or equal to n — m in each component K. Conversely, 
if M has a constant rank less than or equal to n — m in each compo­
nent K, it follows that Rm — 0 is satisfied over 5. If Theorem II is 
taken into account, the following theorem can now be stated. 

THEOREM V. A necessary and sufficient condition that there exist at 
least m independent fields of parallel vectors where m has one of the values 
1,2, • • • , n in an arbitrary open, connected, and simply connected point 
set O contained in an arbitrary component K of an affinely connected 
space S is that Rm = 0 over S. 
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