
SOME REMARKS ON LINEAR DIFFERENTIAL SYSTEMS* 

WILLIAM T. REID 

1. Introduction. In 1926 Bliss t formulated a definition of self-
adjoint and definitely self-ad joint systems of ordinary linear differ­
ential equations of the first order with two-point boundary condi­
tions, the coefficients of the system being real. More recently, BlissJ 
has modified the definition of definite self-adjointness in such a man­
ner that the boundary value problems arising in a well known way 
from nonsingular problems of Bolza in the calculus of variations are 
definitely self-ad joint by the new definition. Further intimate rela­
tionships that exist between such definitely self-adjoint boundary 
value problems and the boundary value problems associated with the 
calculus of variations have been established by Reid.§ 

In this note linear differential systems with complex-valued coeffi­
cients are considered and self-con jugate adjoint and definitely self-
conjugate adjoint systems are defined. I t is shown that definitely 
self-conjugate adjoint systems have only real characteristic values, 
and that for a consideration of the questions of the existence of char­
acteristic values and associated expansion theorems such a system 
may be replaced by a corresponding definitely self-ad joint system 
with real coefficients. In §4 there is solved an associated matrix differ­
ential equation, and the question of self-con jugate adjointness is re­
duced to the determination of a nonsingular constant matrix of a 
certain type. Finally, there is given an application of this matrix dif­
ferential equation to the theory of matrix differential equations of 
Riccati type. 

Matrix notation is used throughout. Capital italic letters denote 
w-rowed square matrices whose elements are complex-valued, the ele­
ment in the ith row and j t h column being denoted by the same letter 
with the subscript ij. Lower case italic letters signify vectors with n 
components, the it\\ component being denoted by a subscript i. If 
M=| |M; / | | , U= [ui], the vectors [MijU3] and [ujM3i] are denoted by 
Mu and uM, respectively, where the repetition of the subscript j indi-
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cates summation with respect to this subscript over the range 
1, • • • , n. The scalar product ufOj of two vectors is denoted simply 
by uv. If ce is a scalar, â is its complex conjugate, and for a vector u 
we write ü for [#»•]. For a matrix ikf=||M;j| | we use M for the con­
jugate matrix |[lfty||, M for the transpose matrix || Afj*||, and M* for 
the conjugate transpose ||M,-»||. Finally, if the elements of M are dif­
ferent ia te functions, the matrix of derivatives is denoted by M'\ 
similarly, if the components of u are differentiate functions, we write 
u'= [uj ]. 

2. Self-conjugate adjoint systems. Using the notation of the pre­
ceding paragraph, the differential system which we shall consider in­
volves the vector differential equations and the two-point boundary 
conditions 

(2.1) y' = [A(x) + \B(x)]y, s[y] s M y (a) + Ny(b) = 0. 

I t will be supposed that the elements of A and B are continuous func­
tions of the real variable x on the finite interval abia^x^b, and that 
the constant matrices M and N are such that the relations Si[y] are 
linearly independent. If X is such that (2.1) has a solution y(x) ^ 0 on 
ab, X is called a characteristic value, and such a solution is termed a 
characteristic solution of (2.1). If pz= [p{] == [P t ?] , q= [#;] = [Qu]* 
(j=l, - - • , n), form n linearly independent solutions of the linear 
equations Mp~Nq = 0, the system adjoint to (2.1) is (see B.I, p. 565), 

(2.2) z' = - z[A(x) + XB(*)], *[*] = *(a)P + *(P)Q = 0. 

The system 

(2.3) u' = - u\I{x) + A5(*)], ?[<*] s «(<0? + "(P)Q = 0 

we shall term the conjugate of (2.2), and the conjugate adjoint of (2.1). 
Clearly if the elements of A (x), B(x), M, and N are real, the elements 
of P and Q may be chosen real, and in this case system (2.3) is identi­
cal with (2.2). In general, if u — u(x) is a solution of (2.3) for a value X, 
then z = ü(x) is a solution of (2.2) for the corresponding conjugate 
value X. 

The system (2.1) will be called self-conjugate adjoint if it is equiva­
lent to (2.3) under a linear transformation us=T(x)y, where the ele­
ments of T are complex-valued functions which are continuous and 
have continuous derivatives on ab, and the determinant of T is differ­
ent from zero on this interval. For brevity, a nonsingular matrix T(x) 
whose elements have continuous derivatives on ab will be termed an 
admissible transformation matrix. 
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THEOREM 2.1. The system (2.1) is self-conjugate adjoint if and only 
if there is an admissible transformation matrix such that 

(2.4) TA +A*T+ V s 0, TB + B*T s 0, 

(2.5) MT-^M* = NT-\b)N*. 

Relations (2.4) follow immediately upon the substitution of u = Ty 
in (2.3). In order for the linear equations s | j ] = 0 to be equivalent 
to the set t[u] = 0 under this transformation, it is seen to be necessary 
and sufficient that there exist a nonsingular constant matrix C such 
that 

(2.6) CP*T(a) = M, CQ*T(b) = N, 

and since P*ikf* — Q*iV* = 0, it is readily seen that (2.5) is equivalent 
to (2.6). If the coefficients of the system (2.1) are real and T is as­
sumed to be real, conditions (2.4), (2.5) are of course exactly those 
obtained by Bliss (B.I, p. 569). 

3. Definitely self-conjugate adjoint systems. Corresponding to the 
modified definition of definitely self-adjoint systems with real coeffi­
cients as given by Bliss in B.II, we say that the system (2.1) is defi­
nitely self-conjugate adjoint if there is an admissible transformation 
matrix T with respect to which it is self-con jugate adjoint, and the 
corresponding matrix S(x) ^T*(x)B(x) satisfies the conditions: 

(i) S(x) is positive semi-definite and hermitian; that is, S(x) =^S*(x) 
and for arbitrary vectors y the form yS(x)y is nonnegative. 

(ii) If y(x)j£0 is a solution of system (2.1) for some value X, then 
y(x)S(x)y(x)fâO on ab. 

THEOREM 3.1. All the characteristic values of a definitely self-con­
jugate adjoint system (2.1) are real. 

For if y(x) is a characteristic solution of (2.1) corresponding to a 
characteristic value X, then z=T(x)y(x) is a solution of (2.2) for the 
conjugate value X. From the differential equations of (2.1) and (2.2) 
we obtain 

z{x)y{x) = (X — X) I z{x)B(x)y(x)dx. 
t J a 

Since s[;y]=0 and / [ s ] = 0 , we also have z{x)y{x) |a = 0.t If X is not 
real, we then have 

f See B.I, p. 565. Obviously the derivation of the formula (7) of B.I does not in­
volve the reality of the elements of M and N. 
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ƒ> b /* b 

z(x)B(x)y(x)dx = I y(x)T*(x)B(x)y(x)dx 
a J a 

-ƒ' y(x)S(x)y(x)dx, 

which, in view of the above hypotheses (i) and (ii), is impossible. 
Hence all the characteristic values of (2.1) are real. 

Without loss of generality one may replace in (2.1) the parameter X 
by Xa where a is an arbitrary nonzero complex number. This is equiv­
alent to replacing the matrix JB(x)=| |5^(^)| | by aB(x) =\\aBij(x)\\. 
We therefore have the following theorem: 

THEOREM 3.2. Suppose that there exists a nonzero complex number 
a and an admissible transformation matrix T(x) satisfying 

(2.4tt) TA + A*T + T' s 0, aTB + âB*T ss 0, 

the condition (2.5), and that the matrix Sa(x)=aT*B satisfies condi­
tions (i) and (ii) of §3. Then all the nonzero characteristic values X of 
(2.1) have argX = a r g a . 

As for the case of a definitely self-adjoint system with real coeffi­
cients (see B.I I), one may proceed directly to show that for a defi­
nitely self-conjugate adjoint system the index of a characteristic 
value is equal to its multiplicity, and derive certain expansion theo­
rems in terms of its characteristic solutions. In view of Theorem 3.1, 
however, the consideration of the existence of characteristic values 
and related expansion theorems for a definitely self-conjugate adjoint 
system (2.1) is reducible to the same consideration for an associated 
definitely self-adjoint system with real coefficients. 

Corresponding to a square w-rowed matrix i? = ||irty|| = 
Klj+( — l)1/2Kl\\ the corresponding script letter ^ shall denote 
the square 2w-rowed matrix 

(3.1) K 
K' -K2 

K2 K1 

ofrealelements. Corresponding to a vector ;y= [y%]^ [y* + ( — \.)i,2y? ], 
7] shall be defined by 7? = [y^, • • • , y}, y?, • • • , y£ ]. Separating real 
and pure imaginary parts of (2.1) for real values #ƒ X, we may write 
this system as 

(3.2) V = [cytf + X ® b , Mrj(a) + Hv(b) = 0, 

If the system (2.1) is self-con jugate adjoint with respect to an ad« 
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missible transformation matrix T(x), then the corresponding matrix 
T5(x) is an admissible transformation matrix with respect to which 
(3.2) is self-adjoint. Moreover, if (2.1) is definitely self-con jugate ad­
joint with respect to an admissible transformation matrix T(x), then 
the real system (3.2) is definitely self-adjoint with respect to ^ ( x ) . 
The relations (2.4), (2.5) and conditions (i), (ii) may be verified di­
rectly. They are, however, immediate consequences of the fact that 
the algebra of square w-rowed matrices K with complex elements is 
equivalent to the algebra of square 2w-rowed matrices i£ of the form 
(3.1), with real elements. 

4. A special matrix differential equation. In §2 we have shown 
that conditions (2.4) and (2.5) are necessary and sufficient for system 
(2.1) to be self-con jugate adjoint with respect to an admissible trans­
formation matrix T(x). The first relation of (2.4) is a matrix differ­
ential equation, and, in particular, T(x) must be a solution of this 
equation with determinant different from zero on ab. This matrix 
differential equation may obviously be considered as a linear vector 
differential system in the n2 elements Ta(x), (i, j=l, • • • , n). The 
condition that | Ta(x)\ 5*0 on ab is, however, a property of a single 
solution of this equation. The result that we wish is contained as a 
special instance of the following theorem : 

THEOREM 4.1. Suppose the elements of the matrices H(x), K(x) are 
continuous functions of x on ab. Then the general solution T(x) of the 
matrix differential equation 

(4.1) T = H(x)T+ TK(x) 

is of the form T(x) = U(x)CV(x), where U(x) is a fundamental matrix 
solution^ of U' =H(x)U, V(x) is a fundamental matrix solution of 
V' = VK(x), and C is an arbitrary constant matrix. In particular, if 
I T(xo) | =0for a point Xo of ab, then | T{x) | ==0 on ab. 

To prove the general form of T(x) we have merely to write 
T(x) — U(x)W(x), where U(x) is a fundamental matrix solution of 
U' = H{x)U. Upon substituting in (4.1) we obtain UW'=UWK, 
which, since | U\ 5*0 on ab, is equivalent to W' = WK. But the gen­
eral solution of this last equation is W=CV, where C is a constant 
matrix and F is a fundamental matrix solution of Vf = VK(x). Since 

|2X*) | = | U(x)\ -\C\ -\V(x)\ 

and | U(x) | 5^0, | V(x) \ 9^0 on ab, the rest of the theorem is immediate. 

t That is, a solution with | U(x) | ^ 0 on ab. 
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Applying this result to the matrix differential equation of (2.4), we 
have H= — A*, K = —A. Moreover, it is seen that if V(x) is a funda­
mental matrix solution of V' = — VA(x), then U= V*(x) is a funda­
mental matrix solution of U' — — A*(x) U. Hence the general form of 
the solution of this equation is T(x) = V*(x)CV(x). Consequently, the 
question of whether or not there is an admissible transformation 
matrix T with respect to which system (2.1) is self-con jugate adjoint 
is equivalent to the question of whether or not there is a nonsingular 
constant matrix C which satisfies with a fundamental matrix solution 
V(x) of V' = — VA (x) the conditions 

V*(x)CV(x)B(x) + B*(x)V*(x)CV(x) = 0, 

* ' MV-x(a)C-xV*-'(a)M* = NV-\b)C-lV*-\b)N*. 

In conclusion, we shall give an application of Theorem 4.1 to non­
linear matrix differential equations of the form 

(4.3) 7' + YE(x)Y = R(x), 

where the elements of E(x) and R(x) are continuous on the interval 
ab. 

THEOREM 4.2. If Y= Fi(x), F = Y2(x) are solutions of (4.3) whose 
elements are continuous on the interval ab, and if T(x) = Y\(x) — Y%{x) 
is such that \ T(xQ) \ =0ata point x0 of ab, then \ T(x) \ = 0 on ab. 

I t may be verified directly that T = Fi— Yi satisfies (4.1) with 

H{x) = - (l/2)[Y1(x) + Y2(x)]E(x)) 

K(x) = - (l/2)E(*)[Fi(*) + Y2(x)}; 

hence Theorem 4.2 is an immediate consequence of Theorem 4.1. 
The hypotheses of a theorem due to W. M. Whyburnf can be sub­

stantially weakened if use is made of the above theorem. Whyburn 
considered the matrix equation of Riccati type 

F ' + YY = R(x) 

and stated specifically $ the assumption that the determinant of the 
difference of two solutions of this equation be different from zero on 
the entire interval considered. In view of the above theorem one may 
simply assume that this determinant is not identically zero on the 
interval. 
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