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(4.2) f(x) = I x(t)dp(t), xzS. 
J o 

Now (4.1) is a linear functional on R, and consequently a linear 
functional on S. Hence (4.2) states that every distributive functional 
on S is linear; but this is impossible unless 5 is finite-dimensional,* 
which it is not. This contradiction establishes the theorem. 
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A set S of n polynomials over a field K, symmetric in n variables, 
said to form a fundamental system if any rational 

function over K, symmetric in these variables, can be expressed ra­
tionally in terms of the polynomials of S. In this paper we show that 
any n algebraically independent symmetric polynomials over a field 
K of characteristic zero form a fundamental system if the product of 
their degrees is less than 2n\. 

The result follows from a theorem due to Perron :J 

THEOREM 1. Between n+1 polynomials (not constant), j \ , j2, • • •, fn+u 
in n variables, of degrees m\, ra2, • • • , mn+i, respectively, there is always 
an identity of the form 

Z-jCnV2...Vn+1fif2 • • • fn+1 = 0, 

where in each term, 
n + l n+1 

X) miVi = I I mi-

* Let every distributive functional on S be linear, where 5 is a topological vector 
space with the property (Q). If S is infinite dimensional, let {xn}, (n = l, 2, • • • ), be 
an infinite set of linearly independent elements. Since \imk+Mk~lxn = O, we can choose 
yn e S, (» = 1, 2, • • • ), linearly independent, with :yn—>0. We set ƒ 6 0 = 1, f(oc)=0 
when x is not a finite linear combination of the yny f(ax-\-by) = af(x) -\-bf(y) for any 
x e S, y e S; then ƒ is a distributive functional on S, and hence is linear on S. Since 
yn—>©, f(yn)—>0 as w—><*>; but this contradicts f(yn) = 1. Consequently S is finite 
dimensional. 

t Presented to the Society, February 25, 1939, under the title A note on funda­
mental systems of symmetric functions. 

% O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie, 
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101. 
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The coefficients CVlV2...Vn+1 belong to the coefficient field offu ƒ2, • • • ,/n+i. 

Consider any ^algebraically independent polynomials^!, 02, • • *,0n, 
of degrees mly m2, • • • , mn, with coefficients in a field K of character­
istic zero. By Theorem 1 there exist relations 

(1) &%(%%, 01 , 02, ' • • , 0n) S3 0 , f = 1, 2, • • • , tl, 

each of degree less than or equal to H^.1 m< in #,-. The algebraic inde­
pendence assures the actual presence of Xi in (1). It follows from 
(1) that the field if(xi, x2, • • • , xn) of all rational functions of 
the xi, X2, - - • , xn is a finite algebraic extension of the field 
if (0i, 02, • • • , 0W) generated by 0i, 02, • • • , 0«. Since if is of char­
acteristic zero, this extension contains a primitive element £, which, 
by Theorem 1, satisfies a relation of the type (1) of degree less than 
or equal to HJ=1 m* in £. Hence we have the following lemma : 

LEMMA 1. If 0i, 02, • • • , 4>n are n algebraically independent polyno­
mials of degrees m\, m2, • • • , tnn, then the field K(xi, x2, • • • , xn) is 
a finite algebraic extension of K(0i, 02, • • • , 0») of degree less than or 
equal to Ü I L Mi' 

The following result, which we state as a lemma, is well known:* 

LEMMA 2. If ai, a2y • • • , an are the elementary symmetric f unctions 
of xi, x2, • • • , xn, then if (xi, x2> • • • , xn) is a Galois extension of 
K(ai, a2, - - - , an) of degree n\. 

Suppose now that 0i, 02, • • • , 0 n are algebraically independent 
and symmetric. Since #i, a2, • • • , an form a fundamental system of 
symmetric functions, it is clear that K(a\, a2, • • • , an) contains 
if (0i, 02, • • • , 0n). Hence the degree of K(xi, x2, • • • , xn) over 
if (0i, 02, • • • ,0n) must be a multiple of the degree of if (#1, x2, • • - ,xn) 
over if (ai, a2, • • • , an) . IflXLi w *<2#! , it follows from Lemma 1 that 
the degree of if (xi, x2l • • • , #n) over if (0i, 02, • • • , 0») must be w!. 
Hence 

i f (01 , 02, * ' * , 0n) == i f (#1, #2, * * * , #n), 

and we have the theorem : 

THEOREM 2. Any set of n algebraically independent polynomials 
0i, 02, * • • , 0n, symmetric in x1} x2, • • • , xn, fl^er afield of characteristic 
zero forms a fundamental system if the product of their degrees is less 
than 2n\. 

* Cf. van der Waerden, Moderne Algebra, vol. 1, p. 173. 
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Theorem 2 is the best possible theorem of its kind; that is, the best 
general sufficiency condition for a fundamental system in terms of 
an upper bound for the product of the degrees without reference to 
the form of the polynomials 0i, 02, • • • , <t>n> This may be verified by 
the example (/>i = a2, 0; = S;, ( i ^ 2 ) , where a2 is the elementary sym­
metric function of degree 2, and Si is the sum of the ith powers of 
the variables. In this case, the product of the degrees is 2n\. The in­
dependence of 0i, 02, * • • , <i>n is established by showing the nonvan-
ishing of the functional determinant D. The expression for D is 

01 — Xn I 

2 
Xn 

n - 1 
Xn I 

where ai = Xi+x2+ • • • +xn. After adding the second row to the first, 
and factoring a,\ from the first row, we have the Vandermonde de­
terminant. Hence D does not vanish identically. On the other hand, 
a>i = (02 + 20i)1/2 is an irrational expression for ax whose uniqueness is 
guaranteed by the independence. In other words, a\ cannot be ex­
pressed rationally in terms of the set 0i, 02, • • • , 0n, and the latter 
set does not form a fundamental system. 
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