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4.2) f(x) = f x()dp(t), xeS.

Now (4.1) is a linear functional on R, and consequently a linear
functional on S. Hence (4.2) states that every distributive functional
on S is linear; but this is impossible unless S is finite-dimensional,*
which it is not. This contradiction establishes the theorem.
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A set S of n polynomials over a field K, symmetric in # variables,
X1, X2, * * * , X, 18 said to form a fundamental system if any rational
function over K, symmetric in these variables, can be expressed ra-
tionally in terms of the polynomials of S. In this paper we show that
any # algebraically independent symmetric polynomials over a field
K of characteristic zero form a fundamental system if the product of
their degrees is less than 2n!.

The result follows from a theorem due to Perron:]

THEOREM 1. Between n+1 polynomsials (not constant), f1, fe, = * +, fat1,
in n variables, of degrees my, ma, - + -, Muy1, respectively, there is always
an identity of the form

vy Ve vl
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where in each term,

n+1 n+1
2 omwi < [ ma.
i=1 =1

* Let every distributive functional on S be linear, where .S is a topological vector
space with the property (Q). If S is infinite dimensional, let {%.}, (n=1, 2, - - - ), be
an infinite set of linearly independent elements. Since limg.,k~1x, =©, we can choose
yneS, (=1, 2, -+ ), linearly independent, with y,—0. We set f(y.) =1, f(x) =0
when x is not a finite linear combination of the y., f(ax+by) =af(x) +bf(y) for any
x ¢S, ¥y e.S; then f is a distributive functional on .S, and hence is linear on S. Since
¥2—0, f(y:.)—0 as n—«; but this contradicts f(y.) =1. Consequently S is finite
dimensional.

1 Presented to the Society, February 25, 1939, under the title 4 note on funda-
mental systems of symmetric functions.

1 O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie,
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101.
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The coefficients Cyvy. . vy, belong to the coefficient field of fi, fay + + *, fat1.

Considerany nalgebraically independent polynomialsg, ¢z, - - -,@n,
of degrees m,, ms, - - -, m,, with coefficients in a field K of character-
istic zero. By Theorem 1 there exist relations
(1) Di(%iy b1, P2, -+ ¢, bn) =0, i=1,2,---,mn,

each of degree less than or equal to ]I, 7. in x:. The algebraic inde-
pendence assures the actual presence of x; in (1). It follows from

(1) that the field K(x1, %2, - - -, x,) of all rational functions of
the x1, %s, - -+, %, is a finite algebraic extension of the field
K(¢p1, ¢2, - - -, ¢n) generated by ¢1, ¢o, * - -, ¢, Since K is of char-

acteristic zero, this extension contains a primitive element £, which,
by Theorem 1, satisfies a relation of the type (1) of degree less than
or equal to [ ]} m; in £ Hence we have the following lemma:

LeMMA 1. If ¢, s, - - -, Pu are n algebraically independent polyno-
mials of degrees my, my, - - -, My, then the field K(x1, %a, + - -, Xs) 1S
a finite algebraic extension of K(p1, p2, - - - , dn) of degree less than or
equal to [ [} m..

The following result, which we state as a lemma, is well known :*

LeEMMA 2. If a4, as, - - -, @, are the elementary symmeiric functions
of X1, %2, + -+, Xn, then K(x1, X2, - + -, %) s @ Galois extension of
K(a1, az, - - -, a,) of degree n!.

Suppose now that ¢, ¢s, - - -, ¢, are algebraically independent
and symmetric. Since @i, a2, - - -, @, form a fundamental system of
symmetric functions, it is clear that K(ai, @, - - -+, a,) contains
K(¢p1, ¢p2, - - -, ¢,). Hence the degree of K(xi, x2, - - -, xn) over
K (o1, 2, - - -, ¢.) must be a multiple of the degree of K (xy, %3, - - -, %»)
over K(ay, as, - - - , @»). IfH:;l m;<2n!, it follows from Lemma 1 that
the degree of K(x1, %2, - * -, xn) over K(¢1, ¢, - - -, ¢,) must be n!.
Hence

K(¢'1; ¢2) Ty ¢n) = K(aly Qg * - )dn)y

and we have the theorem:

THEOREM 2. Any set of n algebraically independent polynomials
D1, Pay - - -, Pu, SYyMmmetric in x1, X3, + - - , X, 0ver a field of characteristic
zero forms a fundamental system if the product of their degrees is less
than 2nl.

* Cf. van der Waerden, Moderne Algebra, vol. 1, p. 173,
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Theorem 2 is the best possible theorem of its kind; that is, the best
general sufficiency condition for a fundamental system in terms of
an upper bound for the product of the degrees without reference to
the form of the polynomials ¢y, ¢, - - -, ¢». This may be verified by
the example ¢1=a3, ¢:=.S;, (¢=2), where a, is the elementary sym-
metric function of degree 2, and S; is the sum of the 7sth powers of
the variables. In this case, the product of the degrees is 2%!. The in-
dependence of ¢1, ¢g, * + -, ¢ is established by showing the nonvan-
ishing of the functional determinant D. The expression for D is

ay — X1 a; — %o A1 — Xy
%1 X2 v %
D = n! xi xz S xi
n—1 n—1 n—1
¥1 X2 co Xn
where a; =x;+x2+ - - - +x,. After adding the second row to the first,

and factoring a; from the first row, we have the Vandermonde de-
terminant. Hence D does not vanish identically. On the other hand,
a1 = (¢pa+2¢1) "2 is an irrational expression for a; whose uniqueness is
guaranteed by the independence. In other words, a; cannot be ex-
pressed rationally in terms of the set ¢, ¢, - - -, ¢, and the latter
set does not form a fundamental system.
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