ON CONTIGUOUS POINT SPACES
THEODORE HAILPERIN

In this paper we shall briefly indicate the kind of geometry ob-
tained by a modification of one of Hausdorff’s axioms for topological
space. The resulting space turns out to be the contiguous point space
of R. L. Moore (Rice Institute Pamphlet, vol. 23 (1936)). However,
unlike Moore, we shall define contiguity, and we shall define it in
terms of point and neighborhood. It is in terms of these two primitive
indefinables that Hausdorff states his axioms for topological space
(Mengenlehre, p. 228):

Axi0M 1. Every point p has a neighborhood U,. For every p, p e U,.

AxioMm 2. For every two netghborhoods U, and V, of the same point,
there is a third W, Up- V.

AxioMm 3. Every point q ¢ U, has a neighborhood U, c U,.

Ax10M 4. For every p and q, p~q implies that there exist neighbor-
hoods U, and U, such that U,- U,=0.

A contiguous point space will be defined by the Axioms 1-3 to-
gether with the following new axiom:

AxtoM 4. There exist points, for example, p and q, such that p~q
and such that for every U, and U, the common part Uy- Uy contains both
pand g.

This axiom is obtained by negating 4 and substituting the condi-
tion U,- U, > (p, q) for the weaker condition U,- U,50. The property
given by 4’ approximates our ordinary idea of contiguity; we set this
down as a formal definition.

DEFINITION. The point p is said to be contiguous to the point g if
(1) p##q, and (2) any neighborhood of the one point contains the other.

First, it may be pointed out, no space containing contiguous points
can be a topological space. This is obvious from the method of deriv-
ing 4’. In topological space a set must have at least a denumerable
infinity of points in order for it to have a limit point. This is not true
for contiguous points since, if p and ¢ are contiguous, the point p is a
limit point of the set (¢), which is a set containing only one point.

THEOREM 1. No point is contiguous to iiself.
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THEOREM 2. If a point p is contiguous to q, then q is contiguous to p.

Theorem 1 results immediately from the first part of the definition
of “contiguous to” while Theorem 2 is a consequence of the symmetry
of both parts.

DEFINITION. The point p is said to be contiguous to the set M if p is
contiguous to some point which is an element of M.

THEOREM 3. If p is contiguous to M, then p is a limit point of M.

Proor. Let g ¢ M be a point which is contiguous to p. Then every
neighborhood of $ contains ¢, which is an element of M. Hence p is a
limit point of M.

THEOREM 4. If M is a closed point set and every point of the set H
s contiguous to M, then no point of 1 — M is a limit point of H.

ProoF. By Theorem 3, every point of H is a limit point of M.
Since M is closed, H is contained in M and consequently can have
no limit points in 1 — M.

Theorems 1, 2, and 4 were taken as axioms by Moore. This was
necessary since contiguity was an undefined concept in his system.
By defining “contiguous to” in terms of “point” and “neighborhood”
we were able to derive these three propositions from one axiom,
namely, 4’. In addition we are saved the trouble of redefining a
number of concepts such as “connectivity” and “boundary point”;
for example, the idea of contiguity was used by Moore chiefly in rela-
tion with connectivity. Ordinarily, the sets 4 and B are said to be
mutually separated if they satisfy the following conditions:

(1) They are mutually exclusive.
(2) Neither of them contains a limit point of the other.

To these Moore adds the further condition:
(3) No point of A is contiguous to any point of B.

Thus the notion of connectedness, which is defined in terms of this
definition acquires a new significance in spaces containing contiguous
points. A set is said to be connected if and only if it is not the sum of
two mutually separated sets.

The additional condition (3) which Moore had to assume now be-
comes unnecessary since it results from the other two in conjunction
with Theorem 3. This may be stated as a theorem:



174 THEODORE HAILPERIN

THEOREM 5. If M and N are connected sets and there exists a point
p e M which is contiguous to N, then M+ N is connected.

THEOREM 6. If pel— M and p is contiguous to M, then p is a bound-
ary point of M.

This results immediately from Theorem 3. Here again we have de-
rived a property which Moore had to assume (by enlarging the defini-
tion of “boundary point,” loc. cit., p. 7).

THEOREM 7. If p is contiguous to q, the set (P, q) is connected.

THEOREM 8. If p is contiguous to q and there exists o neighborhood
containing p and q but no other contiguous points besides p and q, then
the set (b, q), consisting solely of p and g, is closed, connected, and com-
pact; that is, is a simple continuous arc from p to q.

Proor. The set is closed since the only limit points which (p, q)
may have must be contiguous to p or ¢ and this is ruled out by hy-
pothesis. The set is connected by Theorem 8, and, finally, is obviously
compact since it contains no infinite subset.

These theorems suffice to indicate the type of geometry which con-
tiguity involves. For some important applications the reader is rec-
ommended to the aforementioned work of R. L. Moore.*
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* At an advanced stage in his paper, Moore introduces a restrictive axiom (loc.
cit. p. 39):

AxioM D. There do not exist 3 distinct points such that each of them is contiguous to
each of the others.

This axiom can only be proved here by assuming that our points are linearly
ordered.



