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of the form 4& + 1 or both of the form 4&+3, and is zero otherwise. 

THEOREM 5. From III', Nz(n = (>) = 24G'(w). 

THEOREM 6. From VI ' , iV3(> = 0) = 8Ö'(w)+4iJ(w)-4e(w).* 

THEOREM 7. JFV<w» VI ' , i\r3(>=4) = 8G'(rc)+4i7(w)-8e(rc).* 

Since ^ = 7 (mod 8) cannot be represented as the sum of three 
squares, the set of formulas is complete. 

I t is clear that by selecting other functions F(x, y, z) in a suitable 
manner other arithmetical results implicit in our general formulas 
may be obtained. As is usually the case in results of this type, strictly 
elementary proofs are no doubt possible, but are sometimes difficult 
to establish even after the theorems are known. 
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In a paper presented to the International Mathematical Congress 
in Toronto in 1924, N. B. McLean discussed the properties of a cer­
tain one-parameter family of curves lying upon a ruled surface and 
characterized by the condition of forming a constant cross ratio with 
the complex curves of the surface. I t is the purpose of the present 
paper to generalize McLean's system of curves and then to call at­
tention to certain interesting special cases. 

For the defining system of differential equations we make use of 
the form 

(R) y" + puz' + qny + q^z = 0, z" + p2iy' + q^iy + q^z = 0, 

where pi2 = 2qi2y p2i = 2q2i. For this form the two directrix curves 
Cy, Cz are the two branches of the flecnode curve of R. 

The tetrahedron of reference is that determined by the four points 
Py, Pz, PP1 Pa, where 

(1) p = 2 ƒ + p12z, a = 2z' + P2iy, 

the unit point being so chosen that the general point of space will 
be represented by the expression 

%iy + x2z + %zp + #40". 

t Presented to the Society, April 16,1938. 
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The curves generated by the points rj=ay+j3z} f — ay—$z> where 
a, j3 are arbitrary functions of the independent variable x, cut each 
generator g of R in points harmonically separated by the flecnode 
points of that generator. If the tangents to the four curves Cy, CZf 

Cv> Cf, a t points in which they cut a generator of R are to lie on a 
quadric, then the matrix of the coordinates of the general points on 
these tangents must be of rank two. The general points on these four 
tangent lines are given by the expressions 

y + lay' = y — pUKZ + *p, z + 2\z' = — p2i\y + z + ACT, 

rj + 2M' = (a + lixa' - p2iPn)y + (fi + 2/z/3' - p^ap)z + afip + ftwr, 

f + 2v? = (a + 2va! + p2fiv)y - (fi + 2vff + p12av)z + avp - /W, 

and the rank of the matrix of the coefficients of y, z, p, a in these ex­
pressions is two when 

(2) fi = v = Ka/(a - 2«J) = X/3/0 - 2kff). 

When conditions (2) are fulfilled the equation of the corresponding 
quadric is found to be 

(3) #i#4 — x2x$ — pizxg1 + p2\ x£ — 2(oi!/a — $'/fi)%z%\ = 0. 

If now a = cidi(x), /3 = £2020*0, where 0i, 02 are arbitrary functions 
and Ciy C2 constants, then 

a'/a-p/p^ei/Ox-ei/et, 
and it follows that there exists on R, for each choice of the ratio 0i/02 Q> 
one-parameter family of curves forming an involution such that the double 
elements are the two branches of the flecnode curve, and such that the 
tangents to the curves of each family at points of intersection with a gen­
erator of R constitute one regulus of a quadric which is itself uniquely 
determined by the choice of 0i/02. 

If 6i = p2i1/2 and 02 = £i21/2, quadric (3) becomes 

(4) pi2p2i(xixA — x2xs — pi2X? + p2i%£) + 2(pi2q2i — p2iqi2)xdXt = °> 

the flecnode-complex quadric defined by McLean. The curves Cn, Cf 
are now generated by the points 

1/2 1/2 1/2 1/2 

v = cip2i y + c2pu z> f = cipn y — C2P12 z-
When £i = l, £2 = 1, Cv and Q are the complex curves of R. On the 
other hand, when Ci = l, £2=% the points determined by rj, f are the 
involute points of g, and C„ Q are the involute curves of R. McLean 
has shown that the quadric (4) may be determined by the generator g, 
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the line of intersection of the planes osculating the two branches of 
the flecnode curve at their points of intersection with g, and the line 
of intersection of the planes osculating the two branches of the com­
plex curve at their points of intersection with g. In view of the above 
facts, the theorem is equally true if for the complex curve we sub­
stitute the involute curve. Since for every generator on which the 
flecnode points are distinct either the complex points are real or the 
involute points are real, but not both pairs, the mystery of the exist­
ence of the quadric (4) when the complex points are imaginary is ex­
plained. 

By definition all the quadrics given by (3) are tangent to R along g. 
Since, no matter how a and /3 are chosen, the points Py, Pz are double 
points of the involution on g, the tangents to Cy, Cz a t these points 
lie on each quadric. Thus all the quadrics have as a common inter­
section the generator g of R counted twice, together with the tangents 
at PV) Pz to the two branches of R's flecnode curve. 

On each of the quadrics given by (3) lie, in general, two asymptotic 
tangents of R. That regulus of R's osculating quadric 

(5) XiXi ~ #2#3 = 0 

whose lines intersect g consists of asymptotic tangents of R. From 
(3) and (5) it is seen that the pair of planes 

(6) p12xz
2 + 2{a'/a - P'/P)xBxA - pzixf = 0 

contains the complete intersection of (3) and (5). These planes inter­
sect in g and are tangent planes to (5), their points of tangency being 
given by the expressions 

(7) {j87/8 - a! I a ± [(j8'/j8 - a » 2 + Pnpn]w)y + pi*. 

Asymptotic tangents to R a t these points thus lie on the quadrics 
given by (3). 

If we suppose in particular that a'/a—j8'/j8 = 0, so that a/fi^ci/c* 
= const., then (7) becomes, after division by ±pn112, 

1/2 1/2 

P21 y ± pi*z. 

But these are the expressions for the complex points of g.* There is 
thus seen to exist on Ra one-parameter involutory family of curves whose 
double curves are the two branches of the flecnode curve and which are 
such that any four curves of the family cut all generators of R in con­
stant cross ratio. The tangents to these curves along any generator con-

* Wilczynski, Projective Differential Geometry, p. 207. 



110 A. F. CARPENTER [February 

stitute one regulus of a quadric whose equation may be written in the form 

(8) X-iXi — X2X3 — p\2%% + p2\%£ = 0 , 

and on this quadric lie the asymptotic tangents of R at the complex points 
of g. Tha t regulus of this quadric which consists of the tangents to 
the rj, f curves is generated by the two axial pencils 

#3 — KXA = 0 , Xi — K(X2 + pl2%s) + ^21^4 = 0 , 

whose axes are, respectively, the generator g and the line joining Pyf 

to Pz>. The other regulus is generated by the two axial pencils 

#2 + ^12#3 — X#4 = 0 , Xi — \Xz + ^21^4 = 0 , 

whose axes are, respectively, the tangents to the two branches of the 
flecnode curve at Py, Pe. 

Without going into further detail we may state that when 
rj = Ciy + C2Z, Ç = Ciy — C2Z the lines of intersection of the osculating 
planes of pairs of curves Cv, Cf, at points P „ P$- constitute one regu­
lus of a quadric whose equation in the reference system here em­
ployed, where p = pnqii—ptiqu, q = qn—q^ is 

p(XiX± ~ X2XS ~ ^12#32 + p21%£) 

~ 2^(^12^1X3 — ^21#2#4 — <7l2#32 — ÇX3X4: + £21#42) = 0 . 

This quadric also is seen to be tangent to R along g and to have 
in common with (5) and (8) the two asymptotic tangents at the com­
plex points of g. 

Let us next assume that a'/cx—/3'/j3 = £, and hence that a//3 = aecx. 
Equation (3) now becomes 

(9) X1X4 — #2#3 ~ ^12#32 + ^21^42 — 2CXZX4 = 0 , 

which appears to define a one-parameter family of quadrics. But a 
transformation % = cx of the independent variable, which has no ge­
ometric significance, effects the following transformations in the co­
efficients of system (R) and in the reference system : 

pik = cpik, q%k = c2qik, xi = xi, x2 = $2, cx$ = x*, cx^ = £4. 

It follows that the constant c drops out of equation (9) and we have 

(10) #i#4 — #2#3 — pl2%£ + ^>21#42 — 2# 3#4 = 0 ; 

so no generality is lost by taking c = 1. 
If we write u = aex so that rj = u1,2y+u~1/2z, Ç = ull2y — u~ll2z1 the 

system of differential equations in rj and f becomes 
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j ' + UpiW + p2iU~l)r)' - HptfU - P21U-1 + 2)f' 

+ i(pnu — P21U-1 + 2q12u + 2q2iU~1 + 2qu + 2q22 + 1)̂ 7 

— Kpnu + P21U-1 + 2qi2u - 2g2i^~1 — 2g)f = 0, 

f " + iipuP - P21U-1 - 2)j - i(pi*u + p2iU~1)Ç' 

+ ï(pï2U + p2\U~l + 2quu - 2q2iu~1 + 2q)rj 

— KP12U - p2iu~1 + 2qX2u + 2q2iU~1 - 2qn - 2q22 - l)f = 0. 

Now while on each quadric given by (3), and hence on quadric (10), 
there lie two asymptotic tangents of R, it does not follow that there 
will be two asymptotic curves of R included in each one-parameter 
family. If two asymptotic curves of a ruled surface are chosen for 
directrix curves, the defining system of differential equations is char­
acterized by the absence of certain terms of the first order.* In order 
that the two curves given by (11) be asymptotic curves it would be 
necessary for both the coefficient of f ' in the first and that of rj ' in 
the second to vanish; but this is impossible. If either vanishes with­
out the other, one of the curves is asymptotic. A more interesting 
situation develops when we impose a slightly greater restriction on 
the coefficients in (11). We shall first assume that the coefficients of 
both rj' and f ' in the first equation of (11) vanish, that is 

(12) putt + p2iu~l = 0, P12U — p2iu~x + 2 = 0. 

This makes C, an asymptotic curve of R. 
From (12), since u = aex, pi2 = 2qi2, p2i = 2q2i, we find by differentia­

tion that 

P12U — p2iU~l + 2qi2u + 2q2\U~l = 0, 

P12U + p2\U~l + 2quu — 2q2xu~1 = 0. 

Making use of (12) and (13), we may now write system (11) as 

l " + i(2«n + 2 ^ + l)r7 + k f = 0, 
(14) 

f" - V + fa + l(2«n + 2?22 + l)f = 0. 

Equations (12) place certain restrictions on the coefficients of system 
(R). We find that apn = — e~x, p2i = aex and hence 2aqi2 = e~x, 2q2i = aex. 
Assumptions (12) have thus particularized four of the six coefficients 
of (R) and have at the same time introduced an arbitrary constant a. 
But this is not an essential constant, for the transformation z = az, 
which has no geometric significance, removes the a and leaves system 
(R) in the form 

* Wilczynski, op. cit., p. 142. 
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(15) y" - <r*z' + qny + \e~*z = 0, z" + e*y' + \exy + q22z = 0. 

If now in (11) we replace p\2y P21, 2qi2, 2g2i with the respective values 
— e~x, ex, e~x, ex, we obtain the system of differential equations satis­
fied by 77, J" in the form 

Vf,-^-l/aW+Ka+l/a-2nf+i(2qu + 2q22+l)rj+iq^0y 
(16) 

r--i(a+l/f l+2V+J(«-lA)f /+iw+i(2ji i+2 ? M+l)f = 0, 
and when a = 1, (16) reduces to (14). I t may be verified that the direc­
trix curves employed in system (14) constitute the two branches of the 
involute curve of that special type of surface R defined by the flecnode 
system (15). 

If, proceeding as above, we equate to zero the coefficients of rj' and 
f ' in the second equation of (11), system (11) reduces to 

*" ~ 2f' + i(2?n + 2q22 + l)rj + Jgf = 0, 

r + kv + i(2?n + 2 ^ + i)f = 0, 
so that Cf is now an asymptotic curve. At the same time system (R) 
reduces to a form which is identical with (15) after use has been made 
of the transformation z= —az> Equation (17) is recognized as that 
special case of (16) for which a = — 1. 

Tha t the exponential coefficients of (15) do not occur in (16) is not 
surprising when it is seen that the transformation z = exz, which leaves 
the directrix curves unchanged, reduces (15) to the form 

(18) y" - 3' + qny - *5 = 0, z" + y' + 2s' + \y + (q22 + l)z = 0, 

in which the only variable coefficients are qn and g22. 
For system (15) we find that 

(19) p = 2 / - erxz, a = 2z' + exy. 

By successive differentiation and the use of (15) and (19) we get 

p" - e - V + qiip + he-*v = - 2quy + J(2«u + 2q22 + l)e~xz, 

v" + e*p' + \exp + g22cr = - £(2tfn + 2̂ 22 + l)e*y - 2q22z. 

If now we impose upon system (15) the further conditions that qn 
and q22 are unequal constants but are such that 

(21) 2qn + 2q22 + 1 = 0, 

then (20) discloses the fact that the curves Cp, Cff are the two branches 
of the flecnode curve of a ruled surface protectively equivalent to R. 
Wilczynski named the surface generated by the line lpo the derivative 
surface of R. 
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The two sheets Fi, F2 of R's flecnode surface are generated by the 
flecnode tangents lvp and lz<T. On the first sheet Cy figures as one branch 
of its flecnode curve, and on the second sheet Cz plays the same role. 
The points given by the expressions 0 = — exy> </>=p-\-y are the flec­
node points of lyp. By differentiation, making use of (15), (19), and 
(21), we find that 

(22) 0 " - <r*B' + 0ii0 + \er*6 = 0, 0" + e*4>' + Je*0 + g220 = 0. 

The points given by the expressions % = e-xz,\l/ = <T — z, are the flecnode 
points on lZfr. Proceeding as above we find that 

(23) Z" - <r*p + qui; + \<r*t = 0, *" + exÇ + \ext + q22^ = 0. 

Because of the identity of forms of (IS), (22), and (23), it follows 
that for the particular type of ruled surface which is defined by (15) 
and for which 

011 = Ci 7* C2 = 022, 2011 + 2022 + 1 = 0 , 

the two sheets of its flecnode surface are projectively equivalent to it. 
The assumptions on qw and 022 reduce (16) to the form 

*" - *(a ~ 1/*W + *(* + V* - 2)f' + \qi - 0, 
(24) 

r - i ( a + 1/a + 2)n' + i(a - l/a)f' + ^qrj = 0; 

and from (24) by successive differentiation and elimination we obtain 
the fourth order differential equations defining the curves Cni Cf of 
the one-parameter family defined by (24). These equations are found 
to be identical in form and free from the arbitrary constant a, that 
for Cv being rj^+qr]' — lq2rj = 0. I t follows that the curves of this 
family are all projectively equivalent, and since q — const., they are 
anharmonic curves.* 

To sum up, we have demonstrated the existence of a one-parameter 
family of ruled surfaces defined by a system of differential equations 

y" - erxz' + qny + %er*z = 0, z" + exy' + \exy + q22z = 0, 

011 = Ci 9e C2 = 022, 2011 + 2022 + 1 = 0 , 

for each of which the derivative surface as well as each sheet of the 
flecnode surface is projectively equivalent to the given surface, and 
on which there lies a one-parameter involution family of curves whose 
double elements are the two branches of the flecnode curve, all curves 
of the family being projectively equivalent anharmonic curves. 

THE UNIVERSITY OF WASHINGTON 

* Wilczynski, op. cit., p. 279. 


