
A TEST-RATIO TEST FOR CONTINUED FRACTIONS* 

WALTER LEIGHTON 

Introduction. The general question of convergence of continued 
fractions of the form l + i £ f [&n/l] remains in a large measure un­
answered, even though continued fractions of this type are of especial 
importance from a function-theoretic point of view. Valuable con­
tributions have been made by E. B. Van Vleck, A. Pringsheim, 
O. Szâsz, O. Perron, and others. Leighton and Wall [7] recently gave 
new types of convergence criteria for continued fractions of this kind. 
Jordan and Leighton in a paper to be published soon give a large 
number of new sets of sufficient conditions for convergence. 

The purpose of the present paper is to establish the first test-ratio 
test for continued fractions and a very general theorem on conver­
gence, which is also believed to be the first of its kind. This test leads 
to a class of continued fractions, the precise region of convergence of 
which is the interior of a circle. This is a new phenomenon. 

1. A test-ratio test. Let 

00 r . i ^1 ^2 

(1.1) 1 + K[bn/1] = l + _ _ . . . 

be a continued fraction in which the bn are complex numbers p*0. 

THEOREM 1. If the ratio | bn+\/bn\ is less than or equal to k < 1 for n 
sufficiently large, the continued fraction (1.1) converges at least in the 
wider sense. If \ bn+i/bn\ is greater than or equal tol/k> lfor n sufficiently 
large, the continued fraction diverges by oscillation. If the limit of the 
ratio is unity, the continued fraction may converge or diverge. 

Suppose |&n+i/frn| ^k<l for n sufficiently large. I t follows that 
there exists a positive integer Nsuch that \bn\ < 1/4 for n^N. Each 
continued fraction K^[bn/l] then converges (Van Vleck [2], Pring­
sheim [4]) for n^N. The proof of the first statement of the theorem 
is complete. 

Assume |&w+i/M ^ 1 / & > 1 for n sufficiently large. Write (1.1) in 
the equivalent form (Perron [8], p. 197) 

(1.2) l + K[l/an], 
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where 

bib3 ' ' ' &2n-l b2b4 ' ' ' Ô2n-2 

a2n = _ ^ —., a2n_1 — ; » = 1, 2, 3, • • • ; 60 = 1. 
#204 ' ' ' b2n bibz ' • ' 02n-l 

It will be shown that the series ]C| aw| converges, and it will follow 
from a theorem of Stern [ l ] that the continued fraction (1.2), and 
hence (1.1), diverges by oscillation. I t is sufficient to observe that 

I 02n/tf2n-2 | = | #2n-l/&2n | ^ k < 1 , 

I #2n+l/02n-l | = | Ô2n/&2w+l | ^ k < 1 , 

for n sufficiently large. Thus the two seriesX]| #2n+i| a n d ] C | a2n| c o n " 
verge. I t follows that the series ] C | a » | converges, and the second 
statement of the theorem follows as indicated. 

To prove the final statement of the theorem, it is sufficient to con­
sider the example 

a a 
(1.3) 1 + — — 

1 + 1 + 
When a = 1 it is well known that this continued fraction converges to 
the value ( l + 5 1 / 2 ) / 2 . When a = — 1, a computation of the successive 
approximants proves immediately that the continued fraction di­
verges. Indeed, Szâsz [ó] has shown that the continued fraction (1.3) 
diverges for every €>0, if a = — e —1/4. 

COROLLARY. If limw.*00|&w+i/&w| = k, the continued fraction (1.1) will 
converge, at least in the wider sense, if k < 1, and will diverge if k > 1. 

The proof is immediate. 

EXAMPLE. A continued fraction with a circle as its region of conver­
gence. Consider the continued fraction 

oo _ _ C\X C2X
2 

(1.4) i + K[cnx*/l] = l + — — • • - , 

where the cn are complex nonzero numbers. If lim»-*! cn+i/cn\ =C5*0, 
it follows from the preceding corollary that the continued fraction 
(1.4) converges, at least in the wider sense, to a function analytic ex­
cept possibly for a finite number of poles in every closed region 
wholly interior to the circle | x\ = 1/c, and diverges outside. Further, 
if limn^oo| cn+i/cn\ = 0, (1.4) converges to a function meromorphic 
throughout the finite plane. 
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2. A general theorem on convergence. Leigh ton and Wall [7] gave 
an example of a convergent continued fraction (1.1) where the ele­
ments bn were everywhere dense in the complex plane. The following 
theorem attacks the general question of convergence from a different 
point of view. We assume as usual that all &w^0. 

THEOREM 2. Let m0, mi, m2, • • • be any sequence of positive integers 
such that m0 = 2, w w + i - w t t ^ 2 , (n = 0, 1, 2, • • • ). The numbers 

(2.1) 
frmo> 0m\) 0m,2) 

can be chosen in such a fashion that with at most one value in the 
complex plane excluded from each of the numbers bn not contained in 
the set (2.1), the continued fraction (1.1) will converge. 

Let A n/Bn represent the nth. approximant of (1.1), where A n and Bn 

are given by the usual recursion relations 

Ao = 1 , BQ=1, ili = 1 + bu Bx = 1, 

(2.2) An = An_i + bnAn-2y 

Bn = £w_i + bnBn„2, n = 2, 3, 4, • • • . 

By means of (2.2) write A,- and Bj, (j = 2, 3, • • • , m i - - l ) , a s 

(2.20 At = fMi + b2g</A(h Bf = fJBx + b2go3'BQ, 

where ƒ(/ and go3' are polynomials in the numbers 63, b±, * * * , bmi-i and 
do not depend on any other Vs. (Perron [8], p. 14, uses the symbol 
At-mr,mr for fj, and Bt-mr,mr for gf). Suppose the numbers ftf are 
nonzero. I t is clear that | bmo\ = | b2\ can be chosen so small that simul­
taneously 

Ai Ax 

Bj Bi 

Now write A & and Bk, (k = mi, mrh 1, • • • , m2 — 1), as 

where/ifc and gifc are polynomials in ômi+i, &mx+2, * • • , &m2-i and do not 
depend on any Vs not in this set. Similarly, let us suppose for the 
moment that the numbers fik are never zero. The number |&mJ can 
then be taken so small that 

1 
< ~ 2 ~ ' i = 2, 3, • • • , wi - 1. 

A k **• m i — 1 

Bk Bmi-i 

1 
< — ; k = mu mi + 1, • • • , ^2 — 1. 
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Continue the process. With the assumption that ft is never zero 
it is clear that I bm I can be chosen so small that 

At 

Bt i?mr-l 

1 
< , t = mr)mr + 1, - - - 7 rnr+i — 1. 

The continued fraction will thus converge. 
I t remains to assign conditions to the numbers bn so that the num­

b e r s / / will be different from zero. I t is sufficient to exclude precisely 
one value in the finite complex plane from each bn not in the set 
bm0, bmif • • • . For, in the general case, it follows from (2.2) that 

fmr — 1 fmr+l = 1 _L A , 0 

(0 X\ °rnr+2j 
frnr+s = Jm^s-l + ^^mr+s-2 ^ s = 2) 3 , • • • , Mr+1 - Mr - 1 , 

where f^8"1 is a polynomial in &mr+2, &mr+3, • • • , bmr+s-i and de­
pends on no other &'s. The value — 1 is first excluded from &mr+2. It 
follows from (2.3) that one value may be excluded from each succes­
sive b in such a way that jV is never zero. This completes the proof 
of the theorem. 
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