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NON-CYCLIC ALGEBRAS WITH PURE 
MAXIMAL SUBFIELDS* 

A. A. ALBERT 

One of the most elementary consequences of the assumption that a 
normal division algebra A is cyclic of degree n over its centrum K 
is that A contains a quantity j whose minimum equation is con=7 in 
K. In 1933 I conjectured the truth of the converse proposition. The 
proof is easily reducible f to the case where n is a power pe of a prime 
p. Let a be the characteristic of K. I succeeded in proving the theo­
rem for q = p, e arbitrary, J as well as for a^p, e = l.§ There remained 
the case q^p, e^2. 

My hope for the truth of the theorem was heightened by H. Hasse's 
remark|| that it would provide an essential simplification of the arith­
metic existence properties required for the proof of the theorem that 
all normal division algebras over an algebraic number field are cyclic. 
However this hope is at an end. For the conjecture is actually false 
in the remaining case. This is shown by a demonstration of the valid­
ity of the following theorem : 

THEOREM. Let x, y, z be independent indeterminates over a field F of 
real numbers^ K = F(x, y, z). Then there exist non-cyclic normal divi­
sion algebras of degree and exponent four over K, each with a sub field 
K(j) of degree four over K such thatj* = y in K. 

Our example is obtained from a class of non-cyclic algebras given 
in my paper in the Transactions of this Society, vol. 35 (1933), pp. 

* Presented to the Society, February 26, 1938. 
f For, every A is a direct product of division algebras Ai of degrees m = piei for 

distinct primes pi, and A is cyclic if and only if the Ai are cyclic. Moreover the field 
defined by con = 7 splits A if and only if the fields defined by œni = y split the Ai. For 
references to the results used see M. Deuring's Algebren. 

% Transactions of this Society, vol. 39 (1936), pp. 183-188. 
§ Ibid., vol. 36 (1934), pp. 885-892. 
|| In a letter to the author. The arithmetic existence theorem is that of W. Griin-

wald, Journal für die reine und angewandte Mathematik, vol. 169 (1933), pp. 103-
107. The proof of Hasse applicable for the case n = p is as follows. Assume that 7 is 
in K and is exactly divisible by the first power of P for every prime ideal P of K such 
that the P-index of A is not unity. Let also 7 be negative for all real fields conjugate 
to K. Then K(ylln) splits A and is equivalent to a maximal subfield of A. When n is a 
prime p this implies that A is cyclic. 

% Our existence theorem is for F non-modular. It seems likely that a modification 
can be made with F of characteristic any p > 2 . 



19381 NON-CYCLIC ALGEBRAS 577 

112-121. We shall require only slight modifications of the choice of 
parameters of that paper, and shall be so closely concerned with its 
content that we shall refer to its equations, lemmas, and theorems 
by the numbers used therein. Any new equations and lemmas will be 
numbered consecutively with those of this earlier paper, and we shall 
indicate modified results by an accent. 

Put €i=Yi = 0 in (37). This necessitates the deletion of (29) and 
gives 

(36r) P = ~ ^e. 

From (2) we have 

(43) ji = g! = y2u, j \ A = yip = y in K. 

Then7i is the quanti ty^ of our theorem. We shall assume (23)—(27), 
(28), (30)-(34), but shall make some further restrictions. These will 
be necessary in order that the property proved in the original §9 
shall again hold. 

Observe first that the condition (7) that our algebra A have ex­
ponent four has now become 

(7') ai — ai a — (y^a^t^e = 0 

for <*i, ce2, ots in K only if ai = a^ = as = 0. But this is equivalent to (40), 
and the proof of §8 depends only upon (33), (34). Hence this proof is 
valid, and A is a normal division algebra of degree and exponent four 
with a maximal subfield K(j)> (ƒ = 7 in K). 

We prove that A is non-cyclic by showing that A XL is a division 
algebra for every quadratic field L=K(q), (q = ôi-{-ôi).* Observe 
that it is not possible to prove this by showing that A XL has expo­
nent four over L. For it is known f that every normal division algebra 
A of degree four over K has exponent two over an existing field L of 
our type. Our theorem will thus imply the following corollary: 

COROLLARY. There exist normal division algebras A of degree and ex­
ponent four over K and quadratic fields L such that L splits A2 but 
A XL is a division algebra. 

Observe now that (9) becomes Q = ai +aip — a(ag -\-aip). The 
vanishing of Q for ai not all zero is equivalent to the non-trivial van­
ishing of ai +aip—aia, since ai -\-aip is the norm form of a quad­
ratic field. But this is precisely the condition (7')- Hence the sufficient 

* This is as in the earlier paper referred to above. 
t A consequence of Theorem 7 of the author's paper in the Transactions of this 

Society, vol. 34 (1932), pp. 363-372. 
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condition of (9) and §9 is not satisfied, and we shall have to investi­
gate the question more deeply. Observe finally that the proof in §10 
depends only upon the z degrees of our quantities as given in (23)-
(27) and is valid provided that we can prove the result of §9, namely, 
that the algebra B XL is a division algebra. To do this we first make 
the additional assumptions 

(43) 72 of odd y degree, €573 of odd y degree. 

We then prove the following lemma: 

LEMMA 11. There exist polynomials a, b in F[x, z] such that a2+bA 

is not the square of any quantity of the field F(x, z). 

For as in Lemma 2 the equation a2 + b4 = c2 for c in F(x, z) implies 
that c is a polynomial in F[x} z]. The condition is easily seen to be 
satisfied by a = x2, b—z. 

Our choice of 72, 73, €5, 74, 76 in (30), (31), (43) now implies the 
truth of the following lemma: 

LEMMA 12. The y degree of p is a multiple of four, and its y-leading 
coefficient is —a2 with a an arbitrary polynomial of F[x, z]. 

Choose a as in Lemma 11 with a corresponding to b, and put 

(44) 0 = (by-y - p, 

where 4n is the y degree of p. Then cj> also has y degree An and ^-lead­
ing coefficient 

(45) 4>y = M + a2 ^ c2 

for any c of F[x, z]. Observe our introduction of the notation ay for 
the ^-leading coefficient of any quantity a of F[y, x, z]. 

We next prove the lemma : 

LEMMA 13. Let ai, • • • , a% be variables over K, and let 

S = <r(ax2 — a£<t>) — (a7
2 + a8

2), T = 7 2 ^ + <*42P0 — o"(«52 + ae2P0)]. 

Then the form S—T is not a null form over K. 

For let 5— T be a null form so that S=T for ai in K, not all zero. 
There is clearly no loss of generality if we assume the ai polynomials 
in x, y> z. The formal y degree of ai +«4

2P0 is even, and its ^-leading 
coefficient is evidently a sum of three squares. Similarly the ^-leading 
coefficient of cr(a$2 +a6

2p<£) is ay multiplied by a sum of three squares. 
But by (28) ay has odd x degree. Hence the sum of the ^-leading co­
efficients of a3

2 -\-alp(j> — a(ag +a<?p<f)) is zero only if a3 = au = a$ — a§ 
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= 0. But (43) then implies that T either has odd y degree or is zero. 
The ^-leading coefficient of a^—aicj> is a sum of terms such as 

o?iv — aly(b4+a2) and cannot be zero by our choice in Lemma 11 unless 
0:1 = 0:2 = 0. Hence the ^-leading coefficient of cr(a? — a2

2p) has odd 
x degree or is zero, that of ai +ai has even x degree, and S clearly 
has even y degree. This shows that S=T implies that T = 0, 0:3 = 0:4 
= 0:5 = aQ = 0. Our proof also implies that a\ = 0:2 = #7 = as — 0, a contra­
diction. This proves our lemma. 

We now replace the argument of §9 by the property that BXL is 
not a division algebra if and only if 

(46) Ô!2 + ô2
2 = ft'er + pigx - tf<rq, 

for /3i, ft, ft in the centrum K(u) of B, L = K(q), g2 = ôi2+ô2
2, and 

ôi, Ô2 in K. This is a well known property of quaternion algebras.* 
We write ft = Çi + urji and equate coefficients of u, obtaining the equiv­
alent pair of conditions 

(47) ox2 + Ô22 = &2 + vi2P> + 2fe?2 ~ <^)Y2P, 

(48) 0 = 2£mer + [fe2 + V22P) ~ <r(tf + *?32P)]Y2, 

for &, 77», 5i, 52, not all zero, in K. Multiply (48) by X2 and add to 
(47). We obtain 

ôl2 + d 2 = [(£l + X2^x)2 + ^2 (p _ X4)]<r + 72[(X& + P^X-1)2 

(49) 
+ 7̂22X-2(X4 - p)p - <r(X& + prjsX-1)2 - (n^X-2(X4 - p)p]. 

Put \ = byn, 5i = ai, 52 = o:8, ?I+X2T;I = O:I, 771 = 0̂ 2, X£2+prç2X~1 = a8, 
772X

_1 = a4, X^3+pX3X-1 = o:5, ?73X~'1=o:6, and obtain the form S—Toî 
(45). By Lemma 13 the form S— T is not a null form. Hence neither 
is (49); and (47), (48) cannot have a simultaneous solution. This 
proves our final result. 

T H E UNIVERSITY OF CHICAGO 

* It is a corollary of the theorem stating that if L is a field of degree n over K, 
and if A is a division algebra of degree n over K, then L splits A if and only if L is 
equivalent to a subfield of A. For our quaternion algebras these are fields K((3) with 
& = PiV+1827*1 +favji, and we must have /32= ôi° + ô2

2 as in (46). 


