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A PROPERTY OF HARMONIC FUNCTIONS 
IN THREE VARIABLES* 

J. W. GREEN 

A harmonic function u(x, y) of the two variables x, yt which is de­
fined in a circle, and which has a normal derivative vanishing on an 
open set of points on the circle, may be uniquely extended to all points 
exterior to the circle by assigning the same value to u at any point P' 
outside the circle as is assumed by u at the point JP, image of P' with 
respect to the circle. The resulting function is harmonic in the entire 
plane except on the complement of the given open set with respect to 
the circumference of the circle. In this paper it will be investigated 
whether or not an analogous result holds for harmonic functions of 
three variables. 

Let r, 0, 0 be spherical coordinates, and let S be the sphere r = l. 
We consider a function u(r, <£, 0) which is harmonic in the interior 
of the sphere and which together with its normal derivative is con­
tinuous on S. We suppose that 0 is a set of points of S, open with re­
spect to S, on which (du/dr) = 0. If M is a point interior to the sphere, 
then M' is the image of M with respect to S; that is, M' is on the ray 
OM, where O represents the origin, and OMOM' = 1. On occasion 
the notations u{r) and u(r') will be used; they refer actually to 
u(r, $, 6) and u{rf, 0, 0), where (V, </>, 0) and (r', 0, 0) are images with 
respect to S, so that rr' = 1. The variables 0 and 6 are omitted when 
there is no cause for confusion. The symbol 12 is used to denote either 
the set of points on the sphere or the set of values of cj> and 6 corre­
sponding to these points; in each case the meaning will be clear. If a 
point M{r, 0, 6) is under discussion, Q will denote the point on S on 
the ray OM. 

Let S be an open domain containing S and its interior. We have the 
following theorem : 

THEOREM 1. A necessary and sufficient condition that there exist a 
unique analytic extension of u across 0 into the portion of S exterior to S 
is that on 12 

/
u(r)dr = constant. 

o 

Suppose that u is extensible across 0 as described. Let vir') be the 

* Presented to the Society, November 27, 1937. 
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function defined in the part of 2 outside 5 which is the harmonic ex­
tension of u(r). 

LEMMA 1. On 5, the function w(Q) =v(Q) — u(Q) satisfies the equation 

/du\ 
(l) &MQ) = (jr) , 

where A2 is the second differential parameter of Beltrami, 

1 d/ d\ 
— I sin 6 — ) . 

in0 dd\ ddj 

1 d2 

A2 = • + 
sin2 6 d<j>2 sin 1 

Consider the function V(r, </>, 0) =r(du/dr). It is defined and har­
monic inside S; in fact, 

/ du\ Id 
A2( Y — ) = (r2A2u) = 0. 

\ dr) r dr 
Furthermore V vanishes on Œ. Its harmonic extension across Q, is 
given by the formula 

V(M') = - V(M)OM or V(r') = - rV(r). 

Inside 5, V(r) =r(du/dr), and by analytic extension V(r) will be 
representable in this form everywhere. Outside S then, V(r') 
= r'[dv(r')/dr']. Equating the two expressions obtained for V(r'), 
we have 

, àv(/) __ T irr^ _ ^ du(r) 

or 

r' —— = V(r') = - rV(r) = - r2 

dr' dr 

dv(r') du(r) 

dr' dr 

Now 

/

tr' dv Cr' àu(r) 
dr' = v(Q) + - r* — — dr' 

1 dr ' J 1 dr 

/

tr du 
r — dr. 

1 dr 

On integrating this by parts, we obtain 

(2) v(r') = v(Q) - u(Q) + ru{f) - I udr. 
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Since v is harmonic, it satisfies Laplace's equation, 

« **« - 7*{i(r" £ ) + * • } - °-
If we put dv{r')/dr' = -r\du{r)/dr), since d/dr' = (d/dr)(dr/drf) 
= — r2(5/dr), we see that (3) reduces to 

d ( du\ 
(3') r'2A2v(r') = r2 —I r — ) + A2v = 0. 

d r \ ör/ 
From (2), we obtain A2v{r') = A2{v(Q) — u(Q)} +rA2u(r) — f[A2udr. 
Since u is harmonic, 

d / du\ 
A2u = [ r2—J. 

dr \ dr) 
Integrating A2u from 1 to r, we have 

ƒ fr d / du\ du /du\ 

A2udr = - -lr2 — )dr = - r2— + ( — ) . 
i J i dr\ dr) dr \dr/Q 

By employing these values of A2u and J[A2udr we reduce A2v(r') to 
the form 

, , d / du\ du /du\ 
AAr') = A,{»(0) - u(Q)} - r - ( f 2 - ) + r*T ~ ( T ) 

dr \ dr/ dr \dr/Q 
, . d / dîA /d# \ 

If we insert this last value for A2v(r') into (3'), it results immediately 
that 

(4) r'2A2v(r>) = A2{v(Q) - u(Q)} - (^) = 0. 
\dr/Q 

If we put w(Q) =v(Q)—u(Q), equation (4) implies that A2w = (du/dr)Q, 
and the proof of the lemma is completed. 

Let G(Q) and H(Q) be any functions on S with continuous second 
derivatives, and let D b e a domain on S bounded by a curve C with 
continuous normal. We have the relation* 

(5) f (H G )ds - f f (HA2G - GA2H)dS = 0. 
J c\ dn dn J J Jr> 

* See for example Hadamard, Leçons sur la Propagation des Ondes, Paris, 1903, 
p. 49. 
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The differentiation d/dn is with respect to the outer normal to C. Let 
P be a point of 5, and let C be a small circle about P. Let D be the 
larger of the two domains determined. For H take the function w(Q) 
as defined in Lemma 1. Then A2w(Q) is (du/dr)Q, and we denote this 
latter function by F(Q). For G(Q) we take the function log sin \f//2 
where \p= <fc(OP, OQ). By differentiation, A2 log sin \f//2 is found to 
be —1/2, and the second integral of (5) reduces to 

- - ƒ ƒ w(Q)dSQ - ƒ ƒ F(Q) log sin ~ dSQ • 

If the radius of C is allowed to approach zero, it is shown without 
difficulty that the first integral of (5) approaches — 2TTW(P). We then 
have 

(6) w{P) =-ff w(Q)dSQ + ^~ f f F(Q) log sin ^ dSQ. 

The first term of the right-hand member of (6) does not depend on P . 
On 12, we have w ( P ) = 0 , since there v(P)=u(P). Consequently, we 
obtain 

(7) I I F(Q) log sin — dSQ = constant 
J J s 2 

for P on 12. 

LEMMA 2. If a continuous function F(Q) represents the values as­
sumed by the normal derivative of a harmonic f unction u on 5, then 

(8) f u(r)dr = f f F(Q) log sin — dSQ + «(0). 
J 0 2lT J J S 2 

Here the integration is performed along the ray OP, and as before, 
t=Z(OP,OQ). 

Poisson^ formula gives the value of a harmonic function h{P) at a 
point P interior to 5 in terms of its values h(Q) on 5, 

47T J J s (1 + r2 — 2r cos ^ ) 3 / 2 

In particular, apply the formula (9) to the harmonic function 
r(du/dr), which assumes the values (du/dr)Q = F(Q) on S. We have 
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or 

F(Q)(1 - r2) du I f f F(( 

dr 4wJ J s Kl + y (1 + r2 - 2r cos ^ ) 3 / 2 • ^ 5 Q 

If r and e > 0 represent two points inside S on the same ray through 0, 
then 

w(r) — «(e) = — I dt I I dSo 
4TTJ€ J J s /(l + t2- 2tcosW2 

i f f rr \ — t2 

fs J e /(l + /2 - 2tcosW2 

Since « is harmonic, ffsF(Q)dSQ = 0, and the above is the same as 

«(r) — u{e) 

~4^JJs Q\j€ \ / ( l + /2 - 2/ cos £)3 '2 ~ 7 / ƒ ' 

Evaluating the inner integral, we find 

I f f T2 t+T - l"]r 

*'w - "(<) - S i J /«H.7 + '°8 ië+F+öl ' 
where r = ( l + / 2 —2/ cos \f/)112. Let e approach zero. The brack­
eted expression in the integral, evaluated for t = ey approaches 
2+log (1 —cos \p) —log 2, and if this value is inserted, we obtain 

u(r) — u(0) 

(10) I f f (2 r + R- 1 ) 

- rJhmdS°{i+"-^TÏTO "log (1 " " " I • 
where i£ = (1 +r2 — 2r cos xp)112. By combining the last two terms of the 
right-hand member of (10) we can reduce it to the simpler form 

(100 u(r) ~ «(0) = — ƒ ƒ F(Q)dSQ{j - log (1 + R - r cos *) | . 

We are now in a position to calculate f0udr. From (10), 

r + £ - 1 

L''(,)d,-TJLmds"£{j+he 
r(r + R+ 1) 

— log (1 — cos \p) >dr + u(0). 
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The three definite integrals involved in the right-hand member have 
the following values : 

J
11 2dr ( \f/\ \p 

= 2 log ( 1 + sin — ) — 2 log sin — ; 
0 (1 + r2 - 2r cosxP)1'2 \ 2/ 2 

r1 r + R - 1 ^ / t\ 
l Q g / , P , ^dr = 2 log sin— - 2 log! 1 + sin —J + 1, 

J 0 r[r + R + 1) 2 \ 2 / 

ƒ. 
1 . <A 
log (1 — cos \f/)dr = log (1 — cos \p) = 2 log sin —• + log 2. 

Substituting for the three definite integrals their values as just com­
puted, we have 

f udr = f f F(Q) log sin — dSQ + «(0), 

and the lemma is proved. 
From (7) and (8) it follows that J\udr is constant on 0, and the 

necessity of the condition of the theorem is proved. 
To prove the sufficiency, suppose that f0udr = c on 0. Then for Q 

on S y we take for w(Q) =v(Q)—u(Q) the function c—J^udr. The func­
tion v(r') as given by (2) will actually represent the harmonic exten­
sion of u across Ü into the entire exterior of the sphere. For (2) is then 

/

r /» 1 f* r 

udr = c — I udr + ru{f) — I udr 

(ID ' Jo Jl 

udr. 
0 

This function v(r') has the following three properties: 
(a) v(Q)=c+u(Q)-fludr = u(Q) on 0; 
(b) (dfl/drOr'-i = [~r2(r(du/dr)+u-u)]r=i= -(du/dr) = 0 on 0; 
(c) from (4), 

AMO - ~{^Q) - g ) J - i { - /O'A,«* - QJ. 

r ' 2 U o dr\ drj \dr/Q) 

outside 5. 
Properties (a), (b), and (c) show clearly that v(rf) is the harmonic 

extension of u across B. This completes the proof of the theorem. 



554 J. W. GREEN [August 

It is of interest to note that we can prescribe the values of f0udr on 
the entire sphere and determine the harmonic function u giving these 
values. More precisely, we prove the following theorem: 

THEOREM 2. Let M(P) be a function with continuous second deriva­
tives defined on S. There exists a unique f unction u defined and harmonic 
inside S and such that fludr = M{P) ; and u may be expressed in terms 
of M(P) by means of an integral formula. 

If a function u does exist as described, then 

«(0) = — f | u(r)dSQ, 
4irJ J s 

where r is any radius not exceeding one and dSç is an element of the 
area of the unit sphere. Thus 

u(0) = f u(0)dr = — f f \ f u(r)dr\dSQ = — f f M(Q)dSQ. 
Jo 4TJ J s\. J o ) 4wJ J s 

From (8) we see that F(Q), the value of the normal derivative of u 
on 5, must satisfy the equation 

(12) M(P) = - 1 f f F(Q) log sin ~ dSQ + — f f M(Q)dSQ. 
2w J J S ^ 47T J J S 

To determine F(P) perform the operation A2 on both sides of the in­
tegral equation (12). The first term of the right-hand member gives a 
term — F(P) because of the singular integrand log sin ^ / 2 , * and in 
addition a term coming from the differentiation under the integral 
sign: 

A2M(P) = - F(P) + — ffF(Q)dSQ. 

From (12), however, we obtain 

f f M(P)dSP = f f F(Q)dSQ f f log sin — dSP 
J J s 2TT J J S J J s 2 

+ ƒ ƒ M{P)dSP. 

* The argument is precisely analogous to that used in proving Poisson's equation 
for the logarithmic potential; see O. D. Kellogg, Foundations of Potential Theory, 
Berlin, 1929, p. 156. For information about the differential parameter A2, see Darboux, 
Leçons sur la Théorie des Surfaces, Paris, 1914, book 7, chap. 1. 
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Now ffs log sin yfz/ldSrT^O, for the integrand is of constant sign; 
therefore ffsF(Q)dSQ = 0. Hence 

(13) F{P) = - A2M(P). 

If (12) has a solution F(Q), tha t solution must be given by (13). That 
this F(Q) actually satisfies (12) follows from (6). Using the values of 
F{Q) obtained from (13) in the formula (10), we determine a har­
monic function u whose normal derivative on S is F(Q) and for which 

ƒ' 
v 0 

udr = M(P). 

In particular we can choose M{P)—cx on some open set Qi, and 
M{P) =c2 on another open set 02, with Or 02 = 0, and give to M else­
where any convenient values making M have continuous second de­
rivatives. The harmonic function u determined inside of S by the 
use of (13) and (10) has the properties: 

ƒ• 
J o 

ƒ."• 

udr = c\ on Oi, 

l 

udr = c2 on 02, 

on Oi and 02. 

This last statement follows from the fact that (du/dr)P = — A2M(P). 
From (11), u may be extended harmonically across Qi or 02 according 
to the respective formulas 

-ƒ' Ui(r') = ci + rw(r) 

and 

^2(f') = c2 + m(r) — I udr. 
J Q 

The two extensions u\ and u2 differ by £i —£2. This function u, then, 
is an example of a harmonic function whose normal derivative van­
ishes on the open set (Ö1+Ö2), and which may not be extended har­
monically across this set into the exterior of 5 in a unique fashion. 
If u is continued across Qi into the exterior of 5 and back across fl2 

into the interior of 5, it suffers a jump of {c\ — c2). 



556 J. W. GREEN [August 

T h e case du/dr = c, (CT£0)J on an open set 12 can be t r ea t ed in t h e 
same m a n n e r and yields t he curious resul t t h a t in th is case u c anno t 
be ex tended harmonica l ly across O in to a domain 2 conta in ing t h e 
sphere S. For suppose t h a t u could be so extended. T h e n we would 
consider 

du 
V(r) = r—-c, 

dr 

a ha rmon ic function vanish ing on ti. I t s extension across 0 is 

du 
V(r') = - rV(r) = - r2 h cr. 

dr 

Inside t h e sphere, V = r(du/dr) —c. By i ts ana ly t ic i ty V will be ex­
pressible everywhere in th is form; hence 

dv 
V(r') = r ' — - c , 

dr 

where v is t h e extension of u in to t he p a r t of 2) exterior to S. If we 
e q u a t e t h e two values ob ta ined for V(r') we obta in 

du dv 
- r2 h cr = V(r') = rf c9 

dr dr' 

or 

dv du 
= cr + cr2 — r3 — 

dr' dr 

N o w 

/

, r ' dv rr du 
dr' = v(Q) - c log r - c(r - 1) + I r — dr. 

i dr' J i dr 

J u s t as we ob ta ined (4), we ob ta in in this case 

Ah(-r,) = 7 , { A , t * ( ö ) ~ u(Q)] ~ (S) + c l " 
T h e function w(Q) =v(Q)—u(Q) m u s t t hen satisfy, everywhere on 5 , 

/du\ 
AMQ) = ( — ) - c . 

\dr/Q 

Thi s last equa l i ty is impossible, for 
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while from (5), for G = l and H = w, we have 

ƒ ƒ A2w(Q)dSQ = 0. 

THEOREM 3. If (du/dr) = C9£0 on the open set 12 of the sphere 5, and 
if 2 is a domain containing S and its interior, it is in no case possible to 
extend u harmonically across ti into the portion of 2 exterior to S. 

T H E UNIVERSITY OF CALIFORNIA 

ON THE CLASS OF METRICS DEFINING A 
METRISABLE SPACE* 

H. E. VAUGHAN 

Suppose we are given a metrisablef space E. Let M be the class 
of all allowable metrics on E. Let Mb, Mcy MB, and Mc be, respec­
tively, the classes of metrics in which the space is bounded, complete, 
totally bounded, and totally complete. The purpose of this note is to 
obtain systematically all possible theorems which state the equiva­
lence of some topological property of E (such as compactness, or 
separability) to the existence or non-existence of metrics having some 
of the above properties. An example is the well known theorem: 

In order that E be compact it is necessary and sufficient that it be 
complete in every allowable metric. 

The problem may also be stated as follows : Using the four defini­
tions as principles of classification and noting the inclusions Mb 3 MB 
-D MbMc and Mc 3 Mc => MCMB> we may represent M as the sum of 

seven disjoint sets : (1) M- Mb - Me, (2) Mb-MB- MbMCJ (3) Mc- Mc 

* Presented to the Society, December 28, 1937. 
f A topological space will be called metrisable if it is possible to define its continu­

ity properties by means of a metric. Any metric which serves this purpose will be 
called allowable, and the space in conjunction with such a metric will be called a 
metric space. A metric space will be called bounded if there is a finite upper bound to 
the distance between any pair of its points. I t will be called complete if every Cauchy 
sequence converges. It will be called totally bounded if it is, for every positive number 
e, the sum of a finite number of sets of diameter less than e. It will be called totally 
complete if every bounded set is compact. See C. Kuratowski, Topologie I, pp. 82, 87, 
91,196. 


