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(15) ƒ + Xg = *(X), g = 1 + £ h \ - £ b \ = *'(X), 

a rational function of X continuous in the interval (11). 
If all the bk^O we have 0'(Xp+i) = — 00, 0'(Xp) =00 if p>l, while 

if p = 1, then </>'(— <*>) = 1 > 0 . Hence there exists a X in the intervals 
(10) such that <£'(X)=g = 0. But then our hypothesis states that 

f=</>(\) > 0 . By (12), and since <£(X) > 0 , we have /+Xg positive defi­
nite. 

There remains the case where some && = 0. Here we may permute 
the X{ and change the sign of g if necessary and carry the correspond­
ing Xk into xi. Then ƒ = — Xi#i2 +fo(x2, • • • , xn). As in the proof above 
we may carry f0 into (7) and have ƒ in the form (3). B u t / > 0 for 
g = 0 and as in the proof of Lemma 2 we have (5), and /+Xg is posi­
tive definite for X as in (6). 

We have proved our theorem. Notice that our reduction to the 
case g non-singular together with Lemmas 1, 2 determines the range 
of X for which ƒ+Xg is positive definite. 
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1. Introduction. I t is a well known theorem of Gauss that the total 
curvature of any two dimensional surface in euclidean three space is 
equal to the product of the principal normal curvatures. Eisenhartt 
has shown that a generalization of this theorem applies to Riemann 
spaces of class one; that is, the hypersurfaces of an ^-dimensional flat 
space. He proves the theorem: 

When the lines of curvature of a Riemann space Vn of class one are 
real and none of them is tangent to a null vector, the Riemannian curva­
ture at a point for the orientation determined by the direction of two lines 
of curvature at the point is numerically equal to the product of the corre­
sponding normal curvatures) the sign is determined by the character of 
the normal to Vn in the enveloping flat Vn+i. 

* Presented to the Society, September 10, 1937. 
t National Research Fellow. 
I L. P. Eisenhart, Riemannian Geometry, 1926, p. 199. 
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This is Gauss' theorem for a flat Vn+i. The analogous theorem, 
which is true of the hypersurfaces of any Riemann space, appears to 
have been overlooked and is derived in §3 of this note. From this re­
sult, we establish the following theorem which is the converse of the 
theorem of Gauss for a flat Vn+i : 

Let Vn be any hypersurface of a Vn+i such that the lines of curvature 
of Vn are real and none of them is tangent to a null vector. Let the Rie-
mannian curvature of Vn at a point for the orientation determined by 
the direction of two lines of curvature at the point be numerically equal 
to the corresponding normal curvatures, the sign being determined by 
the character of the normal to Vn in the enveloping Vn+i- Then Vn+\ is a 
flat space. 

2. Hypersurfaces of a Vn+i. We begin by a short summary of those 
portions of the theory of hypersurfaces which are necessary in our 
work. Let Vn+i be a real Riemann space with the first fundamental 
form* 

(1) ds2 = aa$dyadyK 

Any real hypersurface Vn immersed in Vn+i is defined by a system of 
equations ya=ya(xl> x2, • • • , xn), where the rank of the Jacobian 
matrix ||3ya/d#*|| is n. The metric induced in the hypersurface by (1) 
determines the first fundamental form of Vn as 

(2) ds2 = gijdxidxi, 

where 

(3) ga = oapy°itfj.1[ 

We assume that real coordinate systems {ya} and {x*} and an 
open region 9Î of the ^-dimensional arithmetic number space {x{} 
exist such that aa${yy) are real functions of class C2 and ya{xi) are 
real functions of class C3 for x c 9?. Since the rank of ||dy*/d#*|| is 
n, (2) is non-singular for x c 9? although it may be indefinite. Under 
these conditions the Gauss equations 

(4) Rhijk = e(Q*A* - QhkQii) + RctfiyBy^y^yJiy8*; 

are satisfied for x c 9Î. In these equations Rhijk and Rapy8 are the 

* Throughout this paper, Greek indices have the range 1,2, • • • , n-\-l and Latin 
indices the range 1, 2, • • • , n. An index which appears twice in an expression is to be 
summed over the appropriate range unless the index appears in parentheses. 

f The comma denotes covariant differentiation with respect to the tensor g»/. 
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Riemann curvature tensors of Vn and Vn+i respectively, and e is plus 
one or minus one, being defined by 

(5 ) e = aaf>Z"l*, 

where the £a are the components of the unit normal to Fw. The quan­
tities Sin are the coefficients of the second fundamental form of Vn 

(6) 0 „ = Gatftu + [jfry, «]oM&*, 

where the brackets are the Christoffel symbols of the first kind formed 
with respect to aap and evaluated for x c $K. It is clear that the func­
tions Rhijk and ~Rapyh are of class C°, Q,-,- of class C', and £a of class C2 

for x c 9Î. 
The directions of the lines of curvature of Vn are given by the 

vectors* (P)X* which satisfy 

(7) (O<,-Xrf<,)(p>X' = 0, 

where Xj, are the principal normal curvatures and are the roots of the 
determinant equation 

(8) {un-Egal = 0. 
If the elementary divisors of (8) are simple (as is always the case if 
(3) is definite), there is at least one orthogonal ennuple of unit vec­
tors (p)X* which satisfy (7). When the elementary divisors are not 
simple, the tangents of some of the lines of curvature are null vectors. 
If (2) is indefinite, the principal normal curvatures need not be real 
even though Vn and Vn+i are both real Riemann spaces. The tangent 
of a line of curvature is real when and only when the corresponding 
principal normal curvature is real.f 

3. The theorem of Gauss for any Riemann space Vw+i. We as­
sume that d)X* and (2>X* are two unit vectors which are tangent to real 
lines of curvature at a point P corresponding to x c 9?. If these direc­
tions and any (n — 2) real unit vectors orthogonal to both d)X* and 
(2)X* are chosen as coordinate directions, it follows from the algebraic 
theory that at Pt 

glZ = gu = ' ' * = gin = 0, (i)X2 = (i)X3 

(9) g23 = g24 = • • • = gin = 0 , (2)X1 - (2)X3 

Qli = KigUy &2i = K2g2i 

* Here p denotes the vector and i the component. 
t T. J. I'A. Bromwich, Quadratic Forms and their Classification by Means of In­

variant Factors, 1906, chaps. 3 and 4. Also cf. M. Bôcher, Introduction to Higher 
Algebra, 1929, p. 305, and Eisenhart, loc. cit., pp. 108-112. 

• = (i)X» = 0, 

• = («X» = 0, 
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We denote by kpq the Riemannian curvature for the orientation de­
termined by (p)X* and (fl>X\ By definition, 

, < „ . 7 i?*.-/*(l)X*(2)Xi(i)X^2)X* 
(10) /Ci2 = • 

From (4), (9), and (10) it follows that 

T, „ , ^ 7 « ( i , £ « ( 2 ) ? ( i ) ^ ( j , f « 
#12 = eKiK.2 -| ; 

gllg22 - g?2 

where (p)fa = (p)X*yfA is the component in the y's of (P)X*. Since, from 
(3) and (9), gufe —& = (a«7ö/3«"-ö«*ö/57)(i)fS)J?i)%)f*» t n e l a s t equa­
tion is equivalent to 

(11) &i2 — Aw = eKiKz, 

where kpq is the Riemannian curvature of Vn+i for the orientation 
determined by (P)%a and (fl)£

tt. Since all the quantities in (11) are in­
variants, this proves the theorem of Gauss for any Vn+i and is valid 
at all points of Vn for which x c 9$. 

Le/ Vn be a hyper surface ofa Riemann space Vn+i. Then the difference 
of the Riemannian curvatures of the Vn and the Vn+i at a point for the 
orientation determined by the directions of two real lines of curvature 
of Vn at the point, neither of which is tangent to a null vector, is numeri­
cally equal to the product of the corresponding normal curvatures) the 
sign is given by (5) and thus is determined by the character of the normal 
to Vn in Vn+i. 

4. The converse of Gauss' theorem for a flat Vn+i. If Vn+i is a 
flat space, kpq^0 and 

(12) kpq = eKpKq 

for every hypersurface for which the elementary divisors of (8) are 
simple. This is the theorem of Gauss for a flat Fw+i. To prove the 
converse of this theorem, we first prove the lemma: 

Given any Riemann space Vn+if an arbitrary.point P of this space, 
and a set of n mutually orthogonal vectors (i)£a, $)%*, • • • , (n)£a at P; 
then there exists a hypersurface Vn in Vn+i such that Vn contains the 
point P and such that the lines of curvature of Vn have the directions 
(I)?", (2)£a, • • • , <»)£« at P. 

To prove this lemma we construct the Vn. Let the coordinates ya 

of (1) be normal coordinates with the given point P as center so 



daP = 0 , 

, y]a = 0, 

<«>*" = 1, 
davli ^ 

— u, 
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that the given ennuple (P)^a and the vector (n+i)£a normal to (P)^a at P 
are the coordinate directions. Then at P , 

(13) 

dyy 

where ea = a^ • <«)(*<«)$*. 
We define a hypersurface 5 by the equations 

yi = 3.» 

where the Ai are non-zero constants. I t is clear that (n+i)£a is normal 
to S. From (3) and (13) it follows that at P 

(15) gu = ei9 gij = 0, i 9*j. 

Upon differentiating (3) with respect to xk, we have 

dgij daa0 yap d2ya p a d2yP 
y,ky,iy,j + a^ —:—- y,i + aa^yti dxk dyi ' ' ' dxldxk ' ' dx'dx* 

It follows from this equation, (13), and (14) that, for x* = 0, 

(16) ^ = 0 . 
dxk 

From (6), (13), (14), and (16), we have at P 

(17) tin = en+iAi, Qn = 0, i 5* j . 

Hence from (15) and (17) it follows that 5 is a Vn which has the given 
vectors (P)£

a as the directions of its lines of curvature at the 
given point. This proves the lemma. 

From this result, the converse of Gauss' theorem for a flat Vn+i, 
stated in the introduction, follows immediately. For if (12) holds for 
every hypersurface in Vn+i, the lemma shows that kpq must be zero 
for an arbitrary orientation, hence Vn+i is flat. 

I t is clear that a similar argument may be employed to show that if 

kpq — k0 = eKpKq, k0 a constant, 

for every hypersurface for which the elementary divisors of (8) are 
simple, Vn+i has constant Riemannian curvature ko and conversely. 
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