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EXISTENCE THEOREMS FOR SOLUTIONS OF 
DIFFERENTIAL EQUATIONS OF 

NON-INTEGRAL ORDER* 

EVERETT PITCHER AND W. E. SEWELL 

1. Introduction. In this paper we prove theorems on the existence 
and uniqueness of solutions of the differential equation 

(1.1) D?y = <t>{xjy), a > 0 , 

where </>(x, 3/) is a known function, y(x) is an unknown function, and 
D^y is the Riemann-Liouvillef generalized derivative of order a of 
the function y(x). For ce = l the equation (1.1) is an ordinary differ­
ential equation of the first order and the restrictions on c/>(x, y) for 
non-integral a are found to be quite similar to those imposed on the 
function in the integral case. 

In establishing the fundamental existence theorem we first prove 
(§2) a theorem of the kind considered by Birkhoff and Kellogg. J 
Our proof rests on three lemmas which are contained in §3 along 
with the definition of the generalized derivative. In §4 we establish 
the existence of a unique solution in the small for 0 < c e < l . The ex­
tension of this solution throughout the region of definition of cj>(x, y) 
and the case a>l are considered in §§5 and 6 respectively. 

2. The general existence theorem. For our purposes the following 
theorem is fundamental: 

THEOREM 2.1. Let E be a set of continuous functions defined on a 
common closed interval, and such that if a sequence of functions each 
belonging to E is uniformly convergent, then the limiting f unction belongs 
to E also. Let S be an operator such that if y is in E, then Sy is in E, 

* Presented to the Society, September 10, 1937. 
t B. Riemann, Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, 

Leipzig, 1892, pp. 331-344; J. Liouville, Sur quelques questions de géométrie et de 
mécanique, et un nouveau genre de calcul pour résoudre ces questions. Journal de l'École 
Polytechnique, (1), vol. 13, no. 21 (1832), pp. 1-69. For further references see W. E. 
Sewell, Generalized derivatives and approximation by polynomials, Transactions of this 
Society, vol. 41 (1937), pp. 84-123; we refer to this paper as SI. See also W. Fabian, 
Expansions by the fractional calculus, Quarterly Journal of Mathematics, Oxford 
Series, vol. 7 (1936), pp. 252-255, where other references are given. 

X G. D. Birkhoff and O. D. Kellogg, Invariant points in function space, Trans­
actions of this Society, vol. 23 (1922), pp. 96-115. 
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and such that there are constants a and B between 0 and 1 for which, 
with yi and y2 in E} we have 

(2.1) | Syi — Sy2\ ^ B max | yx — y2 \a. 

Then the equation 

(2.2) y = Sy 

has a unique solution in E. 

Let jo denote a function in E. Define yn inductively by the equation 

(2.3) yn = Syn-i, n = 1, 2, • • • , 

and consider the series 

(2.4) yv + (yi - y0) + (y2 - yi) + • • • . 

From (2.1) and (2.3) we have 

(2.5) | yn - yn-i\ ^ B max | yw_i - yn-aK 

and this recurrence yields 

(2.6) | yn - Jn_! | ^ Bl+(n-2)«Km^ 

where i£ = max \y\— jo | and m=an~l. The test ratio of the series 
whose general term is the right member of (2.6) is BaKe where 
d = an— an~l = an~1(a — 1). The factor Ba is less than 1 and 0 ap­
proaches Oasw becomes infinite; consequently series (2.4) converges 
uniformly. 

The function y to which (2.4) converges is a solution of (2.2). For 

| Syn — Sy\ ^ B max | y — yn \
a 

and hence Syn approaches Sy as n becomes infinite and passage to 
the limit in (2.3) yields (2.2). 

If s is a second solution of (2.2) in E, then 

(2.7) | y - z\ = | Sy - Sz\ ^ £ m a x \ y - z\a. 

Using (2.7) as a recurrence, we have y=z. 

3. Definitions and lemmas. Let f(x) be a real-valued function de­
fined on an interval* [k, / ] . The derivative of ƒ(#) of order a, denoted 
by Dj*f(x)y is defined by the following equations :f 

(3.1') D$f(x)=f{x); 

* We use the square brackets to denote a closed interval. 
t [a] is the largest integer £a. 
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(3.1") D?f(x) 

(3.1'") D:/(X) 

It is to be understood in (3.1") and (3.1 " 0 that Dx
af(x) is defined if 

and only if the various operations in the order indicated are con­
vergent in the usual sense. In (3.1 ") the value of the derivative at 
x = k is 0. When a is a positive integer, Dx

af(x) in (3.1 ' " ) is the or­
dinary ath. derivative of fix). If a is not an integer, we take that 
branch of (x — z)~a~l which is real and positive for x — k positive. 

If f(x) is bounded and Riemann integrable on [k, k+h], then for a 
positive Dx~

af(x) exists and is continuous. The value of the derivative 
at x = k is 0. 

Our method of proof depends upon the fact that Dx
a and Dx~a are 

inverse operations under suitable restrictions. Thus we need the fol­
lowing three lemmas. In all three we restrict a to lie between 0 and 1. 

LEMMA 3.1. If f(x) is continuous and possesses a continuous dériva-
tive Dx

af(x) on an interval [k, k+h], then fik) =0. 

LEMMA 3.2. If fix) is continuous and possesses a bounded derivative 
g(x) =Dx

af(x) on an interval [k, k+h] then Dx~
ag{x) exists on [k, k+h] 

and is equal to f(x). 

LEMMA 3.3. If fix) is continuous on an interval [k} k+h], then 
DxaDï~af(x) exists on [k, k+h] and is equal to fix). 

We prove Lemma 3.1 as follows. By definition 

D«f{x) =—Drxf{x). 
dx 

Writing the indicated derivative for x = k as the limit of a difference 
quotient, we have 

lim 7 1^\ ï f (* ~ *>""/(*)* 
x=& (x — k)T(l — a) J k 

which becomes, under the transformation u = (z — k)/(x — k)> 
lim I (1 — u)~°f[k + u(x — k)]du. 
x=k T(l — a) J 0 

Applying the First Mean Value Theorem for the integral of a product 
and carrying out the resulting indicated integration, we have 

— - f (* - z)-«~y(z)dz, a < 0; 
- a) J k 

0 ^ [a] = p - 1. 

r ( - a) Jk 

d* 

— Dr*f(x), 
dxp 
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(* ~ k)~« ƒ(£) 
lim > k < £ < x. 
*=& r ( l - a) 1 - a 

Since (x — k)~a becomes infinite, it follows that ƒ(£) approaches 0, 
and thus Lemma 3.1 is proved. 

Lemma 3.2 follows from Theorem 13.2 of SI. I t should be noted 
here that the hypothesis ƒ(k) = 0 in Theorem 13.2 is satisfied by 
virtue of Lemma 3.1. 

Lemma 3.3 is included in Theorem 13.1 of SI. 
As stated in SI the hypotheses and conclusions of Theorems 13.1 

and 13.2 concern subsets of [k, k+h] but it is easy to see that the 
stronger conclusions follow from our broader hypotheses. 

4. The existence theorem in the small for the case 0 < a < l . Let 
the function 0(#, y) be defined and continuous in a region R of the 
(#, ;y)-plane. Let p(x) be defined and continuous at any point x which 
is the projection of a point of R> and let the point (£, p(k)) lie in R. 

In the following lemma M, A, a, &, and h are positive constants 
and 0 < a < l . Furthermore we choose a and b such that points (x, y) 
for which O^x — k^a and \y— p(k)\ Sb belong to R, and we take h 
less than all of the three numbers 

r ( l + a)"l1/a 
rr( i + a)b-\U" rr(i + a)i 

We note for future use that 

A ha 

(4.1) g b, 
r(i + «) 

and that the number B defined by the equation 

Mha 

(4.2) = B 
T(l + a) 

is between 0 and 1. 
We are now in position to state this lemma : 

LEMMA 4.1. /ƒ, for all points (x, y) and (x, y') of R, 

(4.3) | * ( * , y ) | ^A, 

(4.4) | 0(», y) - </>(*, y')\^M\y-y' |«, 

then the equation 

(4.5) y = p(x) +D*«<l>(x,y) 
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has a unique continuous solution y(x) on the interval [k, k+h]. This 
solution has the property that y(k) =p(k). 

We shall prove the lemma by applying Theorem 1.1. To that end 
we let E denote the set of all continuous functions y(x) defined on the 
interval [k, k+h] and satisfying the inequality 

(4.6) | y(%) - p(x) | ^ b. 

We define the operation 5 on functions y in E by the relation 

(4.7) Sy^p(x) + D^«<l>(x,y). 

The function Sy is in E. For Sy is a continuous function of x and 

(4.8) \Sy- p(x)\ = | Z>ra*(*, y) | 

(4.9) ^ ^7T f (x~ z)a~l I * k ?(*)] I dz 

A (x - k)a 

(4.10) S — L 

T{a) a 
(4.11) ^ J. 

In the above appraisal we obtain (4.10) from (4.9) by using (4.3) 
and carrying out the integration. We then replace x — k by its upper 
bound h and use inequality (4.1). 

For any two functions yi and y2 in E we have 

(4.12) \Syi - Sy2\ ^ B max | yx - y2\
a. 

For 

(4.13) \Syi-Sy*\ ^ —- f | x - z\«~' \<t>[zy yi(z)] - «[», y2(z)] \ dz 

M max I yi — y2\
a (x — k)a 

(4.14) ^ ' \ K- >-

(4.15) ^ 5 m a x | yx - y 2 | a . 

We obtain (4.14) by using (4.4) and carrying out the integration. 
Then we replace x — k by its upper bound h and substitute from (4.2). 

The hypotheses of Theorem 2.1 are satisfied and the conclusion is 
that equation (4.5) has a unique solution y{x) in E. It is obvious that 
y(k)=p(k). We observe that any continuous solution of (4.5) on 
[k, k+h] is in E. For if y is a solution its value is given by Sy in 
(4.7) and the argument that Sy is in E still holds. 
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Using the notation of the lemma and setting p(x) = 0 we have the 
following theorem: 

THEOREM 4.2. If<j>(x, y) satisfies (4.3) and (4.4) and 0 < a < l , then 
the equation 

(4.16) Dgy = *(*, y) 

has a unique solution y = u(x) on the interval [k, k+h]. Furthermore 
u(k)=0. 

From Lemmas 3.2 and 3.3 it is clear that the set of solutions of 
equation (4.16) and the set of solutions of the equation 

(4.17) y = Dr"<Kx,y) 

on the interval [k, k-{-h] are identical. Thus we have Theorem 4.2 
by applying Lemma 4.1. 

5. The existence theorem in the large. The solution u(x) of equa­
tion (4.16) can be extended to the boundary of the region R. This is 
stated precisely in the following theorem: 

THEOREM 5.1. There is a number f (possibly + oo) with the following 
properties : 

(1) The solution u(x) of equation (4.16) whose existence is affirmed 
in Theorem 4.2 can be extended so as to be defined on the interval 
k^x<Ç. 

(2) No limit as x approaches J* of points (x, u{x)) belongs to R. 

The method of proof of this theorem is similar to a method some­
times used in proving the corresponding extension to the existence 
theorem for ordinary differential equations. In brief, let Se be the 
region consisting of points of R to the left of the line x = l/e whose 
distance from points of the boundary of R exceeds e4 We suppose that 
e is positive and so small that (k, 0) belongs to Se. We observe that 
for any point (x, y) of Se the numbers a, b of §4 may both be taken as 
e/2 and consequently a choice h* of h can be made uniformly for 
points of 5e . 

We need the following lemma. 

LEMMA 5.2. If u(x) is the unique solution of 

(5.1) Dgy = 4>(x,y) 

on an interval [k,l] with all points (x, u(x)) lying in Se, then u(x) can be 
extended uniquely as a solution of-(5.1) on the interval \ky /+&*]. 
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The equation 

(5.2) y = I>ra*(*, y) 

is an equivalent form of (5.1). We observe that solving (5.2) on 
[k, l+h*] is equivalent to solving the following pair of equations: 

(5.30 y = — T f (* - z)«-l<t>[z, y{z))dz, kSx^h 
y.(pi) J h 

y = —— I (x - z)*-l4>[z, y(z)]dz 
r (a) J k 

(5.3") 
i rx 

+ I (* - s ) a ~ V k y(z)]dz, l S x ^l + h*. 
T(a) J i 

Equation (5.3') has the unique solution u(x). We write u{z) for y{z) 
in the first integral of (5.3"), denoting the resulting function by p(x). 
Then (5.3") reduces to 

(5.4) y = p(x) + J)ra<Kx, y), IS x S I + A*, 

where the subscript / indicates that the lower limit of integration in 
the derivative is /. Equation (5.4) has a unique solution by virtue of 
Lemma 4.1 and the proof is complete. 

By Lemma 5.2 the solution of (5.1) whose existence is established 
in Theorem 3.1 can be extended to the boundary of Se. Since e can 
be chosen arbitrarily small, Theorem 5.1 follows. 

6. The differential equation of order greater than 1. The equation 

(6.1) DJ>y = <t>(x, y), 

where /3>1, can be handled similarly. We consider this case very 
briefly. Suppose /> = 1 + [/3]. We set a=/3 — p + 1. Then equation (6.1) 
can be written 

(6.2) -Dfy = *(*, y). 
dxv~l 

Any solution y(x) of (6.2) is a solution of 

#1 dp—2 
Dgy = aQ H x + • • • H xp~2 

y 1! ( ^ - 2 ) ! 
(6.3) KV 

ƒ* X p Z\ /» Zp-2 

dzi I dz2 - \ - I dzj>-.i4>[zp-i, y(zp~i)], 
k J k J k 
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for constants at- properly chosen. Conversely, for any choice of con­
stants ai any solution of (6.3) is a solution of (6.2). If (&, a0) is in R 
and (4.3) and (4.4) are satisfied, it can be shown by applying Theorem 
2.1 that equation (6.3) has a unique solution on some interval 
[k, k+h] and that 

(6.4) y^{k) = ai9 i = 0, • • • , p - 2, 

where ya+i is the derivative of order <x+i> This leads to the following 
theorem : 

THEOREM 6.1. If (3, ce, p are numbers as described above, if <j>(x, y) 
satisfies (4.3) and (4.4), and if a0, ai, • • • , ap-% is any set of numbers 
with (k, a0) in R, then the equation 

(6.5) Dty = <Kx,y) 

has a unique solution satisfying the initial conditions (6.4). 

HARVARD UNIVERSITY AND 
GEORGIA SCHOOL OF TECHNOLOGY 

NOTE ON INTEGRABILITY CONDITIONS OF 
IMPLICIT DIFFERENTIAL EQUATIONS* 

CLYDE M. CRAMLET 

The Riquierf theory for computing the integrability conditions of 
a system of partial differential equations of arbitrary order but in a 
special form gives a precise method for calculating these conditions 
without repetitions and for obtaining the initial determinations of 
the solutions. These general arguments imply a corresponding the­
orem for implicit systems of equations. I t is the purpose of the 
present note to state that theorem and to point out that it is a con­
sequence of the general theory. All references will be to the Janet 
exposition. 

Let Fk, (£ = 1, 2, • • • , m), represent a system of differential equa-

* Presented to the Society, December 28, 1934. 
t C. Riquier, Les Systèmes d'Équations aux Dérivées Partielles, Paris, 1910. 

M. Janet, Les systèmes d'équations aux dérivées partielles, Journal de Mathé­
matiques, (8), vol. 3 (1920), pp. 65-151. J. M. Thomas, Riquier's existence theorems, 
Annals of Mathematics, vol. 30 (1929), pp. 285-310. J. F. Ritt, American Mathe­
matical Society Colloquium Publications, vol. 14, chap. 9. 


