94 H. S. WALL [February

ON CONTINUED FRACTIONS REPRESENTING

CONSTANTS*
H. S. WALL
1. Introduction. Let £: x®, x® x® ... bean infinite sequence of
points x=(x;, X2, X3, * *+ *, Xm) In a space S, and let ¢;1(x), Pa(x),
¢3(x), - - -, ¢r(x) be single-valued real or complex functions over S.
Then the functionally periodic continued fraction
d1(x®) oz W) or(x®)  ¢i(x®)

1+

1+ 1 44 1+ 1 4
¢k(x(2)) ¢1((X7(3))
+ 1 4+ 1 4

is a function f(£) of the sequence £. By a neighborhood of a sequence
E: x®W) @ x® ... we shall understand a set N; of sequences
subject to the following conditions: (i) £ is in Ng; (ii) if 7: y®@, y®,
y®, - -« isin Ny, then n,: y0+D, y0+D y6+8 . .. and §,: 30, y@,
YO, o g0 gOHD g0+ 0+ ... arein Ngforv=1,2,3, - -.

Let A4.(¢) and B,(¢) be the numerator and denominator, respec-
tively, of the nth convergent of f(£) as computed by means of the
usual recursion formulas. Put

L(%,8) = Bi1(8)t* + [¢x(x®)By_a(§) — Ar—1(8) ]t — da(s®)A1a(8).

Then our principal theorem is as follows:

THEOREM 1. Let there be a sequence c¢: ¢V, ¢®, ¢®, - .. and o
netghborhood N, of ¢, and a number r having the following properties:

(@) f(§) converges uniformly over N,

(b) fle)=r,

(c) L& r)=0 for every sequence & in N,,

(d) ¢:(x»)=%0, (v=1, 2,3, - -;12=1,2,3, .-, k), for every se-
quence £: x®, x®, x® . .. in N,
When these conditions are fulfilled, f(£) =v throughout N.,.

The proof of Theorem 1 is contained in §2; §3 contains a specializa-
tion and §4 an application of this theorem. In §5 continued fractions

* Presented to the Society, April 9, 1937,
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representing constants are obtained by means of certain transfor-
mations.*

2. Proof of Theorem 1. Let n: y®@, y® 4y® ... be any sequence
in N.. Then 5,: y0tD, 00 40+8 . .. isin N, and f(n,), » =0, 1,
2, -+ - ;m0=n), converges by (a); and

fn) = Ap-1()f(1s11) + Ar—2(ns)dr(ytD) ,
| Bk—l(nv)f("]v+1) + Bk_z(ny)¢k(y(v+1))
Bk—2("7v)f(77v) - Ak_2('r],,)

) = — & +D) |
S Bk_lm)f(m)—Ak_1<m>¢(y )

The determinant of the matrix

<Ak_.1(m), Ak—ﬁ(WV)¢k(y(u+1))>
Bi—1(n,),  Br-a(n)ox(ytP)

is (¥t (V) -+ - Pp(y@tD) and is therefore 0 by (d).
Hence the denominators in (1) cannot vanish, for otherwise the
numerators would also vanish, which is impossible. It then follows
from (c) that if f(n,) =7 for one value of », then f(5,) =7 for all values

M

of (=0, 1, 2, 3, - - - ). In particular, if {, is the sequence y™, y®,
y(3)’ N y(l’)’ c(”+1), c(V+2)’ C(”+3)’ e, then f(g‘v)=r’ (y=1’ 2,
3, ).

Now by (a), for every ¢>0 there exists a K such that if n>K,

P=1y213’°",

(2) ’ An+p(§v) _ An(§v)

Bn+p(§‘v) Bn(g‘!’)

forv=1,2,3, . -.Choose a fixed n>K, and then choose » so.large
that 4,()/Ba(¢,) =A4,.(n)/B.(n). Then on allowing $ to increase to
» in (2) we find that

An(n) An(n) < .

B.(n) B..(n)

if n> K. That is, f(n) =r. Since 7 was any sequence in N, our theorem
is proved.

I\

S € or ‘f—'

l G —

* Leighton and Wall, On the transformation and convergence of continued fractions,
American Journal of Mathematics, vol. 58 (1936), pp. 267-281; Wall, Continued
fractions and cross-ratio groups of Cremona transformations, this Bulletin, vol. 40
(1934), pp. 587-592,
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3. Specialization of Theorem 1. Let the sequence ¢ be such that
f(c) is a periodic continued fraction of period k. Let 7, s be the roots
of the quadratic equation L(c, £) =0. Then* in order for f(¢) to con-
verge to the value 7 the following two conditions are both necessary
and sufficient, namely:

(o) By—1(c) #0,

(B) r=s or else
IBk—1(6)7’+¢k(6“))3k—2(0)I >lBk—1(5)5+¢k(6(1))3k—2(5)[ and
Ax(c) —sBa(c) %0, (\=0,1,2, - - -, k—=2).

An important and simple sufficient conditiont for the uniform
convergence of f(£) over N, is that

(7) |¢i(x(v>)| éi‘! (i=1y 2,3,---, k; V‘=1v 2,3, )) for every
sequence £: xW, x® x® ... in N,

From these remarks and Theorem 1 we then have this result:

THEOREM 2. Let there be a sequence ¢ and a neighborhood N. of ¢
such that (y) and conditions (c), (d) of Theorem 1 hold. Then if f(c) is a
periodic continued fraction of period k, we have f(§) =v throughout N,.

4. Application in the case where ¢y, ¢2, @3, * * - , ¢ are polynomials.
If k=1, then L({ t)=82—t—¢:(x®V), so that in order for (c) of
Theorem 1 to hold ¢; must be a constant, and f(£) reduces to an
ordinary periodic continued fraction.

Let k=2. Then L(%, &) =22+ [¢ho(x®) — 1 (x D) — 1 ]t — pa(x). We

shall suppose that ¢,(x) =, (x1, X2, X3, + - * , Xm), (#=1, 2), are poly-
nomials in the real or complex variables xi, %s, x3, * * +, *m. Let @, b
be the constant terms, and G, H the coefficients of x;%xs? - - - x,0 in

¢ and ¢, respectivelil. Then (c) of Theorem 1 is equivalent to the
relations

(b—a)r—b=r(1—r), (H—Gr—H=0, all G, H.
If »=0, then ¢;=0, while if »=1, then ¢;=0. Suppose 70, 1. Then
if either G or H is 0, the other is 0 also, and if G=H, their common

value is 0. Hence (c) of Theorem 1 takes the form of the following
identity:

3) r¢r = (r — 1)(¢2 + 1), r#0,1.
On referring to Theorem 2 we now have this result:

THEOREM 3. Let ¢:1(x) and ¢2(x) be polynomials in the real or com-
plex variables xi, xa, X3, + + * , Xm connected by the identity (3) with con-

* Perron, Die Lehre von den Kettenbriichen, 1st edition, p. 276.
t Perron, loc. cit., p. 262.
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stant terms a and b, respectively. Let r, in (3), and s be the roots of the
quadratic equation t2+(b—a—1)t—b=0 such that r=s or else [r—l—b[
>|s+b|, s=1. Let a, b be such that |a| <%, |b| <, a0, b0,
Then there exists a positive constant R such that throughout the circle
]xi(”)| =R, (t=1,2,- - ,m;v=1,2, - ), we have

P1(xD)  Pa(x®)  G1(x®)  Pa(a®)

4 1+ =rv,
® 1 4+ 1 4+ 1 4+ 1 4
e o, a0,
In applying Theorem 2 we have taken ¢ =(0,0,0, - - -, 0) in the

sequence c. [t is to be observed that, when this is done and Theorem 2
applies, the value of the continued fraction depends upon only the
constant terms of the polynomials ¢, ¢s, ¢3, - -+, Ps.

5. Singular continued fractions. Let T be a transformation which
carries the continued fraction f=x,+ K (x;/1) into another continued
fraction Tf=x, +K(x/ /1) in such a way that when either f or Tf
converges the other does also and their values are equal. We shall
speak of such a transformation as a proper transformation of f. Sup-
pose moreover that for some positive integer # the elements x; of f
are subject to the condition

(5) xX;=x1, i=n,n+l, n+2, ..,
This gives the following formal relation:
X1 Xn—1 x{ xn,—l
% + — =% +— ,
from which one may compute the value of the continued fraction
Xn Xnt1
£ 14+ 1 +--.

when the latter converges.
The procedure outlined above will now be carried out for the fol-
lowing proper transformation :*

xd = % + w1, ¥ = — %1, xs = (14 wx35)/%s;
Ty x;n+1 = Xont1, x;n+2 = (1 4+ %4101 + Font3)/ Bonte,
n=123"---;%#0, —1if n>0.

In this case the relations (5) are satisfied if and only if

* Leighton and Wall, loc. cit., p. 277.
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(6) woive = (1 + 22i)( + @), i=ma+1l,n4+2---,

where if #=0 the first of these relations is to be replaced by
x3=(1+x3). When 7z =0 we have the relation

%o + ®1/g2 = %0 + %1 — %1/8s

from which to compute g.. It follows that, if f converges, g» must
converge and have the value 2; and if g, converges to a value differ-
ent from 0, f must converge and g»=2. Moreover, it is impossible for
g2 to have the value «, for that would imply that f=x, while
Tf=xo+x:15#f. If we now write out the continued fraction g, and
make a change in notation, the following theorem results.

THEOREM 4, If xy, %, X3, - - - are arbitrary complex numbers
#0, —1, then the continued fraction

I e W (e V) R
1 + 1 + 1 +1
es[(1 4+ w)(1 + x) ]2
+ 1 4o

has one of the values 0 or 2 whenever it converges, and it cannot diverge
to o,

O

’ ;= * 1,

It is interesting to observe that if ¢;= 41, (7) is the formal ex-
pansion of 2 into a continued fraction by means of the identity

(1 + pve
¢
As a special case we have the expansion

.
(1+N)1/2=1+£V— N+1 N N +1
14+ 1 414+ 1 4.
which is valid if IV is a positive integer.

The transformation T is one of an infinite group of transforma-
tions discussed by the writer* elsewhere in this Bulletin. If one
obtains the singular continued fractions corresponding to the case
m =3 (in the notation of §3, p. 589, of that article), the following three
theorems result.

1=
1+

* Wall, loc. cit.
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THEOREM 5. If the continued fraction

1 (2 — x4+ 1) % 2 (%2 — w2+ 1)

{1 — — -7 - -
1 — 1 - 1—-1- 1
X3 X3
T_T , %o %0, 22 — 4, + 150,

converges, its value is (1 +43Y2) /2.
THEOREM 6. If the continued fraction

{ o n (2 — xy) ea  x2 (2 — x9) e
1 -1 - 1 -1 -1 - 1 -1 -

e, =+t 1, x,# 0, 2,

bl

converges, its value is 0 or 1,
THEOREM 7. If the continued fraction
1 (1 —2x) 21 x2 (1 —2x) 2
1— 1 —-1—-1- 1 =1
converges, its value is 0 or %.

The proofs of these theorems are along the lines of the proof of
Theorem 4, and will be omitted.
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