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ON THE REMAINDER IN THE APPROXIMATE
EVALUATION OF THE PROBABILITY IN
THE SYMMETRICAL CASE OF JAMES
BERNOULLI'S THEOREM*

BY C. D. OLDS

1. Introduction. In this paper we consider the symmetrical
case of James Bernoulli’s theorem in the theory of probability.
We let m represent the number of successes of an event in a
series of # independent trials with constant probability p=
1—g=1/2 for the success of each trial. Then we seek the prob-
ability P of the inequality

€Y

i n

where ¢ is a given arbitrary positive number. The probability P
is usually given by an approximate formula without mention of
the error term or remainder involved.t In 1926, D. Mirimanoff }
discussed this error term and gave results which are similar, but
not as free from restrictions as those obtained here by entirely
different methods.§

2. The Exact Expression for P. Let T, represent the probabil-
ity of m successes in the # trials and consider its generating
function

> Tut™,

m=0

where ¢ is an arbitrary variable. It has been shown|| that

* Presented to the Society, April 3, 1937.

t See, for example, 1. Todhunter, 4 History of the Mathematical Theory of
Probability, 1865, pp. 548-553.

1 D. Mirimanoff, Le jeu de pile ou face et les formules de Laplace et de J.
Eggenberger, Commentarii Mathematici Helvetici, vol. 2 (1926), pp. 133-168.

§ The author wishes to acknowledge the assistance rendered him by Pro-
fessor J. V. Uspensky.

|| For this and similar results see A. A. Markoff, Wahkrscheinlichkeits-
rechnung, 1912, pp. 18-44.
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f@) = E Twt™ = ()" + D"

m=0

In this last expression we set {=e¢%*, multiply through by e~im¢,
and then integrate between the limits —7 and 7; we find

1 ™
To = — [ fet)einsas,
2rd .

since
v . 0, m=mn,
f e(m—n)mdd, =
-7 27", m = n.
Now let e= —%+4(n/4)V%¢ and express the inequality (1) in the
form

LSmE I,

where /; and /; are integers. Then the probability P has the exact
expression

Iy
R e
m=1, m=1l, 2w
1

T n ly
= — (cos %) einel2 Y gmimbdg,

27l" m=1l,

Using the known identity

: i
Demimt = iU UDS — miGrlDe )

m=l,

2 sin —

and substituting the values of I; and /,, we find that

1 T n H 1 1/2
@) _ L f (COS?_) sin (89
mJo 2 . 9

sin —
2

3. Three Lemmas. Let N be an arbitrary number such that
0 <\ <w. We use the expansion*

* L. L. Smail, Elements of the Theory of Infinite Processes, 1923, p. 245.
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3

2 1 2
—_ = 2 J— 2 — 4 —_ 4
log cos x = (2 1) 2 Bix? 4+ 5 (2 1) 4!B2x

! 20—1 z Bt
+?( - )‘6“' RN S
where B;, By, B;, - - - are the Bernoullian numbers. Conse-
quently all the coefficients in this expansion are positive. Hence,
we can deduce

2
3) — log cos% = ¢ + Mot
¢ ¢ ¢*
4 —1 Z =T 4 4 Ng
4) ogcos2 +192+ ¢S,
where

AN
0< M= )\‘4<logsec7 - —) = a,

8
NN N
0<N = )\‘“<logsec——~———— = b,
2 & 192

provided 0 <¢ =\,
Likewise, from the expansion*

¢ ( 2k _ 2) 2k
IR POy
. ¢ =1 (2F)! 2
2 sin —
2
where again all the coefficients are positive, we find that

1
¢

sin —

(5)

._...2__|_i+L¢‘8
¢ 12 ’

where
A 2 A
0<L§)\“3<csc ————— > = ¢,
2 A 12
provided 0 <@ =\,

* K. Knopp, Theory and Application of Infinite Series, 1928, p. 204.
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Using (3) we can easily show that

n
(COS i — e~ (ne2)/8
2

From (4) we find that

(6) < magte= DB 0 < p = N,

n 2
(cos%) — e (ng2)/8 (1 — %) = (__ nN¢“ + %E%2M2¢8)e"("¢2)/8,

where 0 < £<1, and consequently

n 2
<cosi’.> _ e-<n¢z>/8(1 _ j_)
2 192

< (nbgd + n2a2pF)eeDs 0 < $ < .

4. Application of (5), (6), and (7) to (2). Applying (5) to the
integral on the right of (2), we have

_2 f (cos_>" sin (ben' /%) rn“%)

¢
+ T f (cos?> “¢-sin (3¢n'/%¢)d¢

()

(8) S\
+-~f (cos——) L¢3 sin (3¢n'/%¢)de

L () e,

sin —
2

For brevity, we shall let the integrals in (8) be denoted by I, I,
I3, and I, respectively.
The inequality (7) shows that

2 ne*\ sin (5¢n'/2p)
I =—f e~<n¢2>/8<1———-—)-——————d Aay,
R N 192 é ¢+ Aw
where

2
lA(1)‘<—f (’ﬂb
T v

10245 4 12288a?

wn?

)e (néD[8gp =
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The integral in (9) splits into two integrals, the first of which
gives

A 1 1 1/2
27 oy SR GBI
™
(10) ° ¢ .
2 r° sin (3¢nt/2¢)
= __f e~neDI8 — " db + Ay,
mJo ¢
where
2 r° d¢
[ A(2)| < _...f e~ (ne2) /8 < e—)\inls’
™ Ja ¢ T\
since

* du e *?
el — < ) x> 0.
z u 242

The integral in the right member of (10) is

bt 1 15401/2 0 .
__2__f e—(nw)/siw ¢ = _z_f SR sin ({v) o
™o ¢ m™ Yo ?

2\ /2 ¢
<_._..) f e"(v2)/2dv .
™ 0

We replace the second integral from (9) by

2n *
— | g3 sin (3im'%)de + A,
1921!' 0

where

2n 7 1 nA?
[Ag | < —— | e tenispsdy = _ﬂ<1 4 — ) mars,

1927 J» 3mn 8
We have
o we—<n¢2)/s¢s sin (3nil2p)dg = =8 G2
1920J 6n(2m)1

as is clear if we differentiate three times with respect to « the
integral
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° 1/ m\V2
(11) f e~u® cos (Bu)du = —2—<——> AN a>0,
0 a

and make obvious substitutions.

5. The Integral I,. If we apply the inequality (6) to I, we get

1 A
I, = _f e~ 401% sin (3¢n'%¢)dg + A,
127!' 0

where
IAN)l < ﬁa_fwe—mw)/sd,s.dd, = 1280.
127 J 3rn?
Also,
1 A
— [ sy sin (bmiiig)ds
127I" 0
1 o0
=— | e " sin (3{n'’)d¢ + A,
121!' 0
where

1 e 1
A < _._f e~ (oD 8 = —— g—(nA2)/8
l (5)1 127 J )\ baid 3mn

Using (11) again we find that
— we—(nw/sq«, sin (&¢n'/2%¢)d¢ = __2_§ eIz,
127V 6n(2w)1/?

6. The Integrals I; and I,. For the integral I; we have

1 M o\" ¢ 32
| I,| = — cos— ) ¢t L-dp < — | e )/5¢3dp = — -
T Jy 2 T Jo n?

Likewise for I, we have
1 T n d k3 n d
| 1] §—~f (cosi) 2 éf (cosi) —¢,
T Ja 2 .9 A 2 ¢

since, for ¢ =,
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s.ini)-gi
s

fr<cosi)n LE <f g—(n¢2)/8d_¢ < ie—(nxz)/s’
A 2 ¢ A ¢ n\?

which shows that

Also,

1 < o,
nA?

7. The Remainder A. Conclusion. Combining the above re-
sults we find that the probability P of the inequality

1 n\'/?
S -—4¢—
7 +(3)
is given by

2\12 pt B—¢
P= (_> f NIy 4 G0 A
T 0 6n(2m)L/2

n
m— —

2

where for the remainder or error term A we have

8 4 1 w
] < +—+—0+ %W)] oD 4 —
2 K172 d

NN % nir

with
128
= —\—3— a + 12288a? 4+ 10245 + 32¢.

We now let A take on numerical values between 1 and 2, and
seek, corresponding to each, the smallest value of # such that
|A| <(n?)/2. It is found that, by taking A=1.8, we have the
inequality

1
lal < —
2n?

forn=17.
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