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THE FOUR-VERTEX THEOREM FOR A CERTAIN
TYPE OF SPACE CURVES.*

BY W. C. GRAUSTEIN AND S. B. JACKSON

It is the purpose of this note to establish for a certain type, 4,
of space curves the new form of the four-vertex theorem recently
stated and proved for plane ovals.t

A space curve C shall be said to be of type 4 provided (a)
it is a closed regular curve of class C’/, (b) its curvature never
vanishes, (c) the projection of its tangent indicatrix I on a plane
w perpendicular to the line joining the origin O to the center of
gravity G of I is an oval or, if G coincides with O, the projection
of I on some plane, , is an oval, and (d) this oval is traced just
once when C is traced once.

By a vertex shall be meant a point, or an arc of constant
curvature, for which the curvature has a relative extremum with
respect to the neighboring arcs on either side. A vertex shall be
said to be primary if the curvature at it has a maximum (mini-
mum) which is greater (less) than the average curvature of the
curve with respect to the arc. Otherwise, a vertex shall be
termed secondary.}

The theorem to be established may now be formulated as fol-
lows.

STATEMENT 1. On a curve of type A, whose curvature is not con-
stant, there are at least four primary vertices. More precisely, the
number of primary vertices, if finite, exceeds the number of second-
ary vertices by at least four, and is infinite if the number of second-
ary vertices is infinite.

* Presented to the Society, March 26, 1937.

t W. C. Graustein, 4 new form of the four-vertex theorem, Monatshefte fiir
Mathematik und Physik, vol. 43 (1936), pp. 381-384; for a related theorem,
see Hayashi, Some general applications of Fourier series, Rendiconti del Circolo
Matematico di Palermo, vol. 50 (1926), p. 100. For other work on the four-
vertex theorem in space see Siiss, Ein Vierscheitelsatz bei geschlossenen Raum-
kurven, Tohoku Mathematical Journal, vol. 29 (1928), pp. 359-362; Takasu,
Vierscheitelsatz filr Raumkurven, T 6hoku Mathematical Journal, vol. 39 (1934),
pp. 292-298, and vol. 41 (1936), pp. 317, 318.

1 Ibid., p. 381.
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The theorem may be stated more simply in terms of the con-
cept of a transition of the curvature.* If 1/R is the curvature
of the curve and 1/4 the average curvature with respect to the
arc, a transition of the curvature is defined as a point, or arc,
of the curve for which 1/R has the value 1/4 and 1/R—1/4
changes sign, that is, has opposite signs for neighboring arcs on
either side.

A transition of the curvature is never a vertex, by definition.
Moreover, from the continuity of 1/R—1/4 it follows that the
number of primary vertices between two consecutive transitions
of the curvature exceeds the number of secondary vertices on
this arc by exactly one, or both types of vertices are infinite in
number.t Hence our theorem may be restated as follows:

STATEMENT I1. On a curve of type A, whose curvature is not
constant, there are at least four transitions of the curvature.

In the proof of the theorem we shall prefer to deal with the
radius of curvature of the given curve C rather than with the
curvature and to employ, as parameter, not the arc s of C, but
the arc ¢ of the tangent indicatrix I. If ¢ is measured in the
direction of increasing s, we have

1 do

R ds

Hence, since 1/R>0, ¢ is an admissible parameter for both C
and I. Furthermore, since 1/R is a continuous function of s
which is periodic of period D—the length of C, R is a single-
valued continuous function of ¢ which is periodic of period d—
the length of I.

From the relations ds = Rd¢ and d¢ =ds/R, it follows that

d D (s
f Rd¢ = D, f —=d
0 0 R

* Ibid., p. 382.
t This statement may be expressed quantitatively by the equation
P=S+T
where P, S, and T denote, respectively, the number of primary vertices, second-
ary vertices, and transitions of curvature, and where, furthermore, it is under-
stood that if S or T is infinite the equation is simply to mean that P is infinite.
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Consequently, the average radius of curvature of C with respect
to the arc ¢ of I, namely 4 =D/d, is the reciprocal of the aver-
age curvature of C with respect to the arc s of C, namely,
1/4 =d/D. Thus the definitions of primary and secondary ver-
tices and that of a transition of the curvature might just as well
have been based on comparisons of the radius of curvature with
the average radius of curvature with respect to ¢.

The tangent indicatrix, I, of the curve C has the parametric
equations

Vi = ai(¢): (7/ = 1: 27 3):

where a4, as, a3 are the direction cosines of the directed tangent
to C at the point ¢ =¢. For C itself we have the equations

dx; = Raid¢>, (1' = 17 27 3),

with the conditions of closure
d
f Raidp = 0, (i=1,23).
0

These conditions, together with the fact that 4 is the aver-
age value of R with respect to ¢, may be written in the forms

d d
f (R — A)dp = 0, f (R — A)aid¢ = — Da;, (i=1,2,3),
0 0

where (@, &, @;) are the codrdinates of the center of gravity, G,
of the curve I, and hence in the form of the identity

d
f (do + 12131 + (12167} + asas)(R - A)d¢
0
= — D(ma:1 + @202 + asds)

in the arbitrary constants aq, @1, a3, @3.

The right-hand side of this identity vanishes if the direction
with the components a1, as, a3 is perpendicular to the line OG
or if, as in the case of a plane oval, G coincides with O. Thus, we
pass to the following conclusion.

LEMMA 1. The relation

d
f (a0 + a101 + ascs + a303)(R — A)dp = 0
0
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holds for every plane ao+a1x1+ asxs+asxs =0 which is perpendicu-
lar to the plane 7 associated with the given curve C of type A after
the manner described in the definition of a curve of this type.

We may now establish our theorem, by assuming that it is
false. There are, then, since R#A4, just two transitions of the
curvature. In other words, there exist two points P, Q on I such
that R—4 1is of one sign or zero for one of the arcs, PQ, into
which the points divide I and is of the opposite sign or zero for
the other arc, QP.

Consider, next, the function a¢+ai01+acz+asas, where the
a’s are so chosen that a¢+aix1+asx2+aszx;=0 represents the
plané through P and Q which is perpendicular to . This plane
cuts the oval which is the projection of I on 7 in just two points,
which are necessarily the projections of P and Q, and of P and Q
only. Hence, it divides the oval into two arcs, one on either side
of it, and these arcs must be the projections of the arcs PQ and
QP of I. 1t follows, then, that the function in question is posi-
tive or zero for one of the latter arcs, and negative or zero for
the other.

It is now evident that the expression

(@0 + @101 + azas + azas)(R — 4),

never changes sign, and so the integral of it extended around 7
cannot be zero. But this contradicts Lemma 1 and our theorem
is established.

The reader may observe that, when the center of gravity of I
is at the origin, it is unnecessary to assume that there exists a
plane on which the projection of I is an oval. It is sufficient to
make the less restrictive assumption that through each two
points of I there passes a plane, p, dividing [ into exactly two
arcs, one on either side of p. This follows from the fact that,
when &;=0,7=1, 2, 3, Lemma 1 holds for any plane whatever.

The existence of twisted curves of type 4 is readily estab-
lished. Fujiwara has shown that a closed curve on the unit
sphere is the tangent indicatrix of a closed space curve if and
only if the center, O, of the sphere lies interior to the convex
hull of the curve.* The problem of exhibiting a twisted space

* M. Fujiwara, Uber die kleinsten eine Kurve enthaltenden konvexen Kirper,
The Science Reports of the Téhoku Imperial University, vol. 4 (1915), p. 341.
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curve of type 4 is thus reduced to that of finding a spherical
curve, other than a great circle, whose convex hull has O as an
interior point and which projects into an oval on a properly
chosen plane.

On the unit sphere x; =sin ¢ cos 0, x,=sin ¢ sin 6, x3=cos ¢,
consider the curve I;:

6= %+ 5(3 + sin 2n6),

where 7 is a positive integer and § is a small positive constant.
This curve cuts through the (x;, x;)-plane at 4% points regularly
distributed in pairs about the circle ¢ =7 /2, and hence O is in-
terior to the convex hull of these points. A similar statement
can then be made concerning the point (0, 0, €) with respect to
the points in which the plane x;=¢ meets I;, provided ¢SO0 is
sufficiently small in numerical value. Consequently, O is interior
to the convex hull of I;.

Since I; is symmetric in the xs-axis, its center of gravity lies
on this axis. That G does not coincide with O is evident from
the fact that the maximum value of ¢ is 7/2+(3/2)8, whereas
the minimum value is /2 —4§/2. Hence, a plane 7 of the defini-
tion of a curve of type 4 is in this case a horizontal plane, say,
the (x;, x3)-plane. But, for § sufficiently small, the projection
of I; on the (x1, xz)-plane is certainly an oval, inasmuch as the
curvature of the projection is a continuous function of § and,
when 6 approaches zero, the projection approaches the circle
¢ =m/2. Therefore, the curve I, for sufficiently small values of §,
is the tangent indicatrix of a twisted curve of type 4.

An example of a curve on the unit sphere which is the tangent
indicatrix of a twisted curve of type A and has its center of
gravity at O is given by ¢ =m/2+46 sin 210, where # is a positive
integer and 0 is a positive constant, sufficiently small.
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See also Fenchel, Geschlossene Raumkurven mit vorgeschriebenen Tangentenbild,
Jahresbericht der Deutschen Mathematiker Vereinigung, vol. 39 (1930), pp.
183-185.



