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Let Dy, denote a domain containing H, such that Dy, (K+Dx,)
=0. Let Dg, denote a domain containing K, and such that

Dk, (H+Dg,+Dg,) =0. This process may be continued and
Dy = Dy, and Dx=) Dg, are two mutually exclusive domains
covering H and K respectively.
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We assume that the function f(x) is almost periodic in the
sense of H. Bohr and that the functions E(a), aE(a) are abso-
lutely integrable in [— w0, = ].

TuHEOREM. If all real zeros of the function

1 0
v(a) = —f E(u)eterdy
27 J

have integer multiplicities and only two limit points «, o*, then
every solution ¢(x) of the equation

0 [ Be- 290 = 1
which is uniformly continuous and bounded in [— «, »] is al-
most periodic.

Proor. Without loss of generality we may assume that the
finite limit point o* has the value 0; otherwise we multiply equa-
tion (1) by e~ iz,

Putting
3 ® 2u\ sint u
o == (a4
2 n u*

—0

we obtain

[ E@ouc + 9z = 116a),
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3 r- 2u\ sin* u
é.(t) = '—f ¢<t + ——) du.
2 J _ n ut

If v,(x) denotes the generalized Fourier transform of ¢,(f),
then, in our case,t v,(c) is a linear function for a>2x and
a< —2n.

The functions f,.(x) and ¢,(x) are differentiable and the deriv-
ative of ¢,(x) is bounded. The function E(£) being absolutely
integrable, we therefore obtain

where

[ E®sre+ i = 1.

Putting
1 for |a| Ze,
a|\2/ |el
Ae(a) = (2_T> (27—1) for e<|a| < 2
0 for |al| = 2,
and

T(u) = if_:)\e(a)e_i““da,
S = 7@ = [ fi Gt wpruran,

bun®) = 6 D) = [0l o+ )i,
we obviously have

[ E® bue + 9t = 1),

—0o0

If v,,(e) and u,.(a) are generalized Fourier transforms of
Pn.e(x) and f,,.(x), then the relation]

1 S. Bochner, Mathematische Annalen, vol. 102 (1929), pp. 489-504, vol.
103 (1930), pp. 588-597.
1 S. Bochner, loc. cit.
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Y(@)dv,, (@) = du,, ()

holds.

It follows from the construction of the function N.(a) that
the function v () has a finite number of zeros in those intervals
where v,,.() is not linear. Consequently, by a result of S. Boch-
ner,T the function ¢,,(x) is almost periodic in the sense of H.
Bohr.

When e—0, ¢, (x) converges to ¢,/ (x) uniformly in [— o0, o ].
This follows from

7l ()

€

[ oGt =c[ gta+n 2oz ar—o,
where M is a constant. Hence, ¢, (x) is almost periodic in the
sense of H. Bohr. But ¢,(x) is bounded. Therefore, by the theo-
rem of Bohr, ¢,(x) is also almost periodic. Finally, ¢(x) being
uniformly continuous, the sequence ¢, (x) converges to ¢ (x) uni-
formly in [— o, | as n— o, and ¢ (x) is almost periodic itself.

We note that the assertion of the theorem remains valid if,
more generally, the limit points of the zeros of y(a) are isolated;
it is also possible to drop the assumption that the zeros have
integer multiplicities.
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