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CONCERNING NORMAL AND COMPLETELY 
NORMAL SPACES* 

BY F. B. JONES 

Urysohn has shown that any completely separable, normal 
topological space is metric. It is the principal object of this paper 
to establish a similar result for certain separable spaces. 

THEOREM 1. Every subset of power c\ of a separable normal% 
Fréchet space-L {or -H) has a limit point. 

PROOF. Suppose, on the contrary, that S is a separable, nor­
mal Fréchet space-L (or -H) which contains a point set M of 
power c having no limit point. Let Z denote a countable subset 
of S such that every point of S either belongs to Z or is a limit 
point of Z. Since S is normal, there exists for each proper subset 
J o f J l f a domain Dj which contains / but which neither con­
tains a point of M—J nor has a limit point in M — J.U J and K 
are two different proper subsets of M, then ZDj and Z>DK are 
different subsets of Z. Hence, there are at least as many sub­
sets of Z as there are proper subsets of M. However, since M 
is of power c and Z is only countable, there are more than c 
proper subsets of M but at most c subsets of Z. This is a contra­
diction. 

The above argument with slight changes establishes the fol­
lowing three theorems. 

THEOREM 2. Every subset of power c of a separable, completely 
normal^ Fréchet space-L {or -H) contains a limit point of itself. 

THEOREM 3. J f 2 ^ > 2 ^ , every uncountable subset of a separa­
ble normal Fréchet space-L {or -H) has a limit point.\\ 

* Presented to the Society, October 28, 1933. 
t The number c is the power of the continuum. 
Î A space is said to be normal provided that, if P and Q are two mutually 

exclusive closed sets, there exist two mutually exclusive domains containing 
P and Q respectively. 

§ A space is said to be completely normal provided that, if P and Q are two 
mutually separate point sets, there exist two mutually exclusive domains con­
taining P and Q respectively. 

|| The numbers fc0 and foi are the first and second transfinite cardinals re­
spectively. That 2^i > 2^o is an immediate consequence of a well known theo­
rem if the hypothesis of the continuum holds true, that is, if üi^c. 
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THEOREM 4. If 2^1>2^°, every uncountable subset of a separa­
ble completely normal Frêchet space-L {or -H) contains a limit 
point of itself, 

A space-L may, however, be separable and normal but con­
tain an uncountable point set not containing a limit point of 
itself. This is shown by the following example. A lemma will be 
established first. 

LEMMA A. There exists on the number interval 1(0, 1) a point 
set M of power \&i such that if Kis a countable subset of M, then K 
is an inner limiting set with respect to If.* 

PROOF. Let a denote a well-ordered sequence whose elements 
are the points of 1(0, 1). Let Pi denote the first point of a. Let 
Q2 denote an inner limiting set of 1(0, 1) of measure zero con­
taining Pi, and let P2 denote the first point of a in M—Q2. Let 
Qs denote an inner limiting set of measure zero containing 
P1+P2 + Ç2. Let P 3 denote the first point of a iîi M — Q3, • • • . 
In general, if z is an ordinal less than coi and for each ordinal 2, 
1 <z<z, Pz and Qz are defined, then X}iP» + Qz)» z<z, is of meas­
ure zero and there exists an inner limiting set Qz of 1(0, 1) of 
measure zero containing^2(PZ+Qz), z<z. Now 1(0, 1) —ft is of 
power c. Let Pz denote the first point of a in 1(0, 1)—QZ. Let /5 
denote the sequence Pi, P2 , P3 , • • • , Pz, • * * and let M denote 
the subset of 1(0, 1) whose points are the elements of j8. 

It is evident from the construction that M is of power fc$i. 
Suppose that K is a countable subset of M. Let Pz denote the 
first point of M in /3 which follows K in /3 and let H=^Pz, 
z<z. Then K is a subset of iJ, which is clearly an inner limiting 
set with respect to M. But H—K is countable since both H and 
K are countable, and therefore K is an inner limiting set with 
respect to M. 

A N EXAMPLE. Let M' denote a subset of 1(0, 1) of power Ni 
such that every countable subset of M' is an inner limiting set 
with respect to M' and let Z ' denote the set of all points (x, y) 
of the plane such that (1) both x and y are rational numbers, 
(2) 0 < # < 1 , and (3) ;y>0. Furthermore, let a denote a well 
ordered sequence of the points of M' such that if P is a point 

* The symbolism Gs is used by some to denote an inner limiting set. 
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of M', it belongs to a and is preceded in a by only a countable 
subset of M'. Let 5 denote a space consisting of the points of M' 
and Z ' in which sequential limit point is defined as follows: I. A 
point P of Z ' is the sequential limit point of a sequence of points 
Pi, P2, P3 , • • • of S provided there exists a number N such that 
\în>N, then Pn = P. II . A point P of ikf' is the sequential limit 
point of a sequence of points Pi, P2 , P3, • • • of Z' provided that 
(1) it is the sequential limit point of Pj , P2 , P3, • • * in the plane 
and (2) the line PPn approaches the normal to 1(0, 1) at P as n 
increases without limit. I I I . A point P of M' is the sequential 
limit point of a sequence of points Pi, P2 , P3 , • • • of M' pro­
vided that for each element a of a preceding P there exists 
an integer N such that if n>N, then either (1) P n = P or (2) P n 

is between a and P in a; IV. In general, a sequence of points 
Pi, P2 , P3 , • • • of S has a sequential limit point P provided that 
P is by I, II, and III the sequential limit point of each of its 
subsequences which lie in M' or Z1. In order that it may be 
easier to keep in mind which limit point notion is being used, 
we shall adopt the convention that if H is a subset of 5, H shall 
denote the point set as a subset of S and H' shall denote the 
corresponding subset of the plane. 

From the definition of the above paragraph it is easy to see 
that S is a separable Fréchet space-L. It will now be shown that 
S is normal. 

Suppose that H and K are two mutually exclusive closed sub­
sets of S. If both are uncountable, then H-M and K-M are 
uncountable, and letting A\ denote the first point of H in a, 
Bi denote the first point of K which follows A\ in ce, A2 denote 
the first point of H which follows Bi in ce, • • - , we see that 
Ai, A2l AZy - • • and 5 i , B2, B%, • • • have the same sequential 
limit point. But since the sets are closed and mutually exclusive, 
this is impossible. Consequently one of the two sets is countable. 
We shall suppose that K denotes the countable set. 

Since no point of Z is a sequential limit point of any sequence 
of distinct points of S, any subset of Z is a domain. Hence if H 
is a subset of Z, DH = H and DK ̂ S — H are two mutually exclu­
sive domains containing H and K respectively. Likewise if K is 
a subset of Z, then DH = S — K and DK = K are two mutually 
exclusive domains containing H and K respectively. 

On the other hand, if H and K contain points of M, then for 
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each point P oîK- M, let a denote the first point of a which pre­
cedes P in ce such that no point of H- M is between a and P in a. 
Let dp denote P together with all points of M which are between 
a and P in a. Then dp is a closed domain with respect to M con­
taining P , and DiK=^2dP is a domain with respect to M cover­
ing K-M and containing no point of H. Furthermore, DiK is 
closed, for if 0 were a limit point oî^dp not belonging t o ^ d p , 
then it would belong to M and be a limit point of the points 
P of K - M, and hence belong to K • M. Since DiK is countable, let 
D1K = 01 + 02 + 0z+ • • • . Then % = 0{ + 0 / + 0{ + • • • is 
an inner limiting set with respect to M'. It shall be assumed for 
convenience that D[K does not contain the end points of 1(0, 1). 
There exists a sequence of point sets D{, D{ , D( , • • • of I (0, 1) 
such that (1) for each n, Dn' contains Z>n'41, (2) the common part 
of D{ • M, D{ >M,D{ • AT, • • • is D'lK, and (3) for each n, Dn' is 
the sum of a set of non-overlapping segments d[n, d^n, d^n, • • • . 
For each segment djn, let rjn denote the interior of a regular 
hexagon in the plane having djn as a diameter and let 
Rn =^2rjn. For each n, let /n' denote the interior of an inverted 
equilateral triangle lying in Rn' with its base parallel to the 
X-axis and lower vertex at On'. Let T' denote the set of all 
points X' and Z' such that, for some n, X' is in /„'. Now 
DK = DIK+(T—T-H) is a domain with respect to S. Further­
more, no point of M — DiK is a limit point of DK. For if P is 
a point of M—D1K, P is not a limit point of DiK and there exists 
an integer k such that Ru does not contain P ' . But no sequence 
of points P{, P{, P{, • • • lying in T' has P r as a sequential 
limit point in the plane such that the line P'Pn approaches the 
normal to the X-axis at P' since, for each w, P'Pn would make 
an angle of at least 30° with this normal when Pn' lies in R^. 
Hence DK is closed and contains K but no points of H. There­
fore, DH = S — DR and DK are mutually exclusive domains con­
taining H and K respectively, and 5 is normal. 

The reader will observe that if N is an uncountable subset of 
St then N' M is uncountable and N has a limit point, namely, 
the first point P of a such that infinitely many points of M pre­
cede P in a. But it is clear that not every uncountable subset of 
5 contains one of its limit points ; for suppose that N is the set of 
all points P of M such that there is a first point of M in a pre-
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ceding P in a. Then N is uncountable and contains none of its 
limit points. 

In order to make an application of Theorem 4, two lemmas 
will be established. Throughout the rest of this paper M de­
notes a space satisfying Axiom 0 and parts 1,2, and 3 of Axiom 1 
of R. L. Moore's Foundations of Point Set Theory and is referred 
to as a Moore space M. 

DEFINITION. A space is said to have the Lindelof property pro­
vided that if G is a collection of domains of the space covering 
a point set K, then G contains a countable subcollection G' cov­
ering K. 

LEMMA B. In order that a Moore space M should have the 
Lindelof property it is necessary and sufficient that every uncount­
able subset of M should have a limit point* 

The necessity is well known. It remains only to establish the 
sufficiency. 

PROOF. Suppose that G is a collection of domains covering a 
point set K. Let a denote a well-ordering of K. For each ny let 
Hn denote a subcollection of G obtained by the following 
method. Let P\ denote the first element of a such that some 
element g\ of G contains every region of Gn of Axiom 1 that 
contains Pi. Let P2 denote the first element of ce, not contained 
in gi, such that some element g2 of G contains every region of Gn 

of Axiom 1 that contains P2 . In general, if z is an ordinal and 
for each ordinal z, z <z, Pz and gz are chosen, then let Pê denote 
the first point (if any) in a not contained in ^gz, z<z, such that 
some element gz of G contains every region of Gn of Axiom 1 
that contains P2. From this construction, it is clear that the set 
Pi, P2 , P3 , • • • , Pz, • • • has no limit point, for no region of Gn 

contains more than one of them. Hence Hn = gi, gz, gz, • • • , 
gz, - - - is a countable subcollection of G. Then G' =^2^°Hn is a 
countable subcollection of G. Furthermore, Gf covers K. For 
suppose that there is a point P of K not contained in any ele­
ment of G'. Let g denote a domain of G containing P . By 

* Lemma B is an advance over Theorem 18 on page 14 of R. L. Moore's 
Foundations of Point Set Theory. However, Moore's arguments may be used 
with some modifications to establish Lemma B. 
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Axiom l there exists a number n such that every region of 
Gn which contains P lies in g. Hence P , for some ordinal z, 
is Pi used in the selection of Hn, which is a contradiction. 

LEMMA C. If every uncountable subset of a Moore space M has 
a limit point, M is a completely separable metric space. 

PROOF. By Lemma B, for each n, Gn of Axiom 1 contains a 
countable subcollection Gn covering M; hence G'=^Gn' is a 
countable collection of regions having the property that if P 
is a point of a region R, some element of G' contains P and lies 
in R. Hence M is completely separable. Professor Moore has 
pointed out that such a space is metr ic* 

THEOREM 5. If 2^1>2^°, then every separable normal Moore 
space M is completely separable and metric. 

This follows from Theorem 4 and Lemma C. 
The author has tried for some time without success to prove 

that 2^1>2^°. But although Theorem 5 is unsatisfactory in 
this respect, it does raise a question of some interest: Is every 
normal Moore space M metric? This question is as yet unsettled. 
However, if the answer is yes, then it should be possible to es­
tablish directly certain results for normal Moore spaces M which 
are known to hold in metric spaces but which are known not to 
hold in all Moore spaces M. The author has established a num­
ber of such theorems but it seems likely that only one of them 
may be of use in settling the question itself. 

THEOREM 6. A normal Moore space M is completely normal. 

PROOF. Suppose that H a n d K are two mutually separate sub­
sets of a normal Moore space M. For each integer n> let Hn de­
note the set of all points P of H such that no region of Gn of 
Axiom 1 which contains P contains a point of K.\ Likewise, for 
each n, let Kn denote the set of all points P of K such that no re­
gion of Gn which contains P contains a point of 27. For each n, 
Hn and Kn are closed and H c^2Hn and K c^Kn. Let DRX de­
note a domain containing H\ such that DHX K = 0. Let DKX 

denote a domain containing Ki such that DKX- (H+DH^ = 0 . 

* R. L. Moore, Foundations of Peint Set Theory, pp. 459 and 464. 
t The notation K means K plus its limit points. 
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Let DH2 denote a domain containing H2 such that DH2 • (K+DKJ 
= 0. Let DK2 denote a domain containing K% and such that 

DK2- (H+DH^DHJ) = 0. This process may be continued and 
DH =%2,DHn and DK = S ^ n

 a r e two mutually exclusive domains 
covering H and K respectively. 

T H E UNIVERSITY OF T E X A S 

ON AN INTEGRAL EQUATION WITH AN 
ALMOST PERIODIC SOLUTION 

BY B. LEWITAN 

We assume that the function f(x) is almost periodic in the 
sense of H. Bohr and that the functions E (a), aE(a) are abso­
lutely integrable in [— <*>, oo ]. 

THEOREM. If all real zeros of the function 

i r00 

7(a) = — I E(u)e~iaudu 

have integer multiplicities and only two limit points oo, «*, then 
every solution <£(x) of the equation 

J -oo 
(1) E(S-x)-4>(l:)dl;=f(x) 

J -oo 

which is uniformly continuous and bounded in [ — °o, °° ] is al­
most periodic. 

PROOF. Without loss of generality we may assume that the 
finite limit point a* has the value 0; otherwise we multiply equa­
tion (1) by e~ia*x. 

Putting 

, . 3 r °° / 2u\ sin4 u 
ƒ»(*) = — I ƒ( x-\ J —du, 

27TJ-00 \ n/ u4 

we obtain 

£ ( £ ) * . ( * + * ) # = ƒ•(*), ƒ' 


