EQUIVALENCE OF ALGEBRAIC EXTENSIONS†

BY REINHOLD BAER

The commutative fields $\ddagger K$ and H are equivalent with regard to their common subfield L, if there exists an isomorphism between K and H which maps every element of L upon itself. If H and K are equivalent with regard to L, then the same equations with coefficients in L have solutions in H and in K. It is the aim of this note to establish a criterion for the validity of the converse of the above proposition.

The field F is *completely algebraic* with regard to its subfield S, if F and S satisfy:

- (1) F is algebraic with regard to S;
- (2) if f is an isomorphism of S upon the subfield S' of the field G' such that every equation (with coefficients) in S which has a solution in F is mapped by f upon an equation in S' which has a solution in G', then f is induced by an isomorphism of F upon a field F' between S' and G' ($S' \leq F' \leq G'$).
- E. Steinitz\(\) has proved that every simple algebraic extension\(\) and every normal algebraic extension\(\) is completely algebraic.

LEMMA 1. If the algebraic extension F of the field S satisfies the condition (i) to every pair of fields U and V such that $S \leq U \leq V \leq F$, V finite with regard to U, there exists a field W between V and F such that W is finite and completely algebraic with regard to U, then F is completely algebraic with regard to S.

PROOF. There exists a chain of fields F_v (v an ordinal number

[†] Presented to the Society, October 31, 1936.

[‡] Only commutative fields will be considered in this note.

[§] See E. Steinitz, Algebraische Theorie der Körper; Mit Erläuterungen und einem Anhang: Abriss der Galois-schen Theorie, neu herausgegeben von Reinhold Baer und Helmut Hasse, 1931.

 $[\]parallel S$ is the simple algebraic extension of the field F, generated by the element b, if b satisfies an algebraic equation with coefficients in F and S is a smallest field containing F and b.

 $[\]P$ N is normal with regard to its subfield S if every irreducible polynomial in S which has zeros in N is in N a product of linear polynomials.

taking all values between 0 and a certain ordinal number k) such that $F_0 = S$, $F_{v+1} = F_v(e_v)$ is a simple (algebraic) extension of F_v for $0 \le v \le k$, F_v is the join of all the F_u with $0 \le u < v$, if v is a limit ordinal, $F_k = F$. This chain of fields F_v satisfies in particular the relations $S \le F_u \le F_v \le F$, if u < v.

Assume now that G' is an algebraic extension of the field S' and that there exists an isomorphism $\mathfrak S$ of S upon S' such that (I) every equation in S with solutions in F is mapped by $\mathfrak S$ upon an equation in S' with solutions in G'.

There will now be constructed by complete (transfinite) induction a chain of fields F_v' and of isomorphisms \mathfrak{f}_v of F_v upon F_v' such that $S' \leq F_u' \leq F_v' \leq G'$ for u < v; $\mathfrak{f}_0 = \mathfrak{F}$, \mathfrak{f}_v induces \mathfrak{f}_u in F_u for u < v; every \mathfrak{f}_v satisfies (I). Since $F_0' = S'$ and $\mathfrak{f}_0 = \mathfrak{F}$ is a suitable beginning for this construction, it may be assumed that F_v' , \mathfrak{f}_v have been defined for every v with $0 \leq v < u$ ($\leq k$) and that they satisfy the above conditions.

Case 1. u = w + 1 is not a limit ordinal.

Denote by g(x) the irreducible polynomial in F_w whose zero is e_w . It is mapped by f_w upon a certain polynomial $g^*(x)$ in F_w' and $g^*(x)$ has zeros in G', since f_w satisfies (I). Let b_1, \dots, b_n be the set of all the zeros of $g^*(x)$ in G'; n is finite and positive. Since g(x) is irreducible in F_w , f_w is an isomorphism, it follows that $g^*(x)$ is irreducible in F_w' , and consequently there exists for every i exactly one isomorphism \mathfrak{h}_i which induces \mathfrak{f}_w in F_w and maps F_w upon $F_w'(b_i)$ and e_w upon b_i .

If \mathfrak{h}_i does not satisfy (I), then there exists a polynomial $q_i(x)$ in F_u which has zeros in F such that the polynomial $q_i^*(x)$ upon which $q_i(x)$ is mapped by \mathfrak{h}_i has no zero in G'. Assume that none of the isomorphisms \mathfrak{h}_i satisfies (I). The set of all the solutions in F of the equation $g(x)q_1(x)\cdots q_n(x)=0$ generates a certain field V between F_w and F which contains F_u and is finite with regard to F_w . There exists therefore by condition (i) a field W between V and F which is finite and completely algebraic with regard to F_w . Since the isomorphism \mathfrak{f}_w of the subfield F_w of W satisfies (I), it follows that there exists an isomorphism \mathfrak{h}_1 of W upon a field W' between F_w' and G' which induces \mathfrak{f}_w in F_w . Since the isomorphisms $\mathfrak{h}_1, \cdots, \mathfrak{h}_n$ are all the possible isomorphisms of the subfield F_u upon a field between F_w' and G' which induce \mathfrak{f}_w in F_w , and since F_u is a subfield of W, \mathfrak{h} induces in F_u exactly

one of the isomorphisms \mathfrak{h}_i , say \mathfrak{h}_1 . Since $q_1(x)$ has zeros in W, $q_1(x)$ is mapped by \mathfrak{h} and by \mathfrak{h}_1 upon a polynomial in $F_w'(b_1)$ which has zeros in G' in contradiction to the above assumption. Therefore at least one of the isomorphisms \mathfrak{h}_i , say \mathfrak{h}_n , satisfies (I) and it may be defined by $\mathfrak{f}_u = \mathfrak{h}_n$, $F_u' = F_w'(b_n)$, and thus the chain of fields and isomorphisms has been prolongated in the required way.

Case 2. u is a limit ordinal.

Then F_u is the join of the increasing chain of fields F_v with v < u. If F'_u is defined as the join of the increasing chain of fields F'_v with v < u, then there exists one and only one isomorphism $\dagger f_u$ of F_u upon F'_u which induces f_v in F_v for v < u. Since every polynomial in F_u is contained in a certain F_v with v < u, and since every f_v with v < u satisfies (I), it follows that also f_u satisfies (I).

Thus it has been proved that fields F_u' and isomorphisms \mathfrak{f}_u , satisfying the above conditions, exist for every u with $0 \le u \le k$. There exists therefore, in particular, an isomorphism \mathfrak{f}_k of $F_k = F$ upon a field F_k' between S' and G' which induces the given isomorphism \mathfrak{g} in S, and therefore F is completely algebraic with regard to S.

COROLLARY 1. If F is algebraic and separable‡ with regard to its subfield S, then F is completely algebraic with regard to S.

PROOF. If $S \leq U \leq V \leq F$, then F and V are separable with regard to U. V is therefore a simple algebraic extension of U if, and only if, V is finite with regard to U. Since simple algebraic extensions are completely algebraic, it follows therefore that F satisfies (i) with regard to S, and consequently Lemma 1 implies that F is completely algebraic with regard to S.

THEOREM 1. Assume that F is completely algebraic with regard to its subfield S, that F' is algebraic with regard to its subfield S', and that \$ is an isomorphism of S upon S'. Then there exists an

[†] See E. Steinitz, loc. cit., Erläuterungen, pp. 17-18.

[‡] F is separable (and algebraic) with regard to its subfield S, if every element of F is a solution of a separable irreducible equation in S. An irreducible equation g(x) = 0 in S is not separable if the characteristic of S is a prime number p and $g(x) = \sum_{i=0}^{n} s_i x^{p_i}$. All the solutions of a separable equation are different. Every finite separable extension is simple.

isomorphism of F upon F' which induces \$ in S if, and only if, every polynomial g(x) in S has the same number of zeros in F as the polynomial $g(x)\$ = g^*(x)$ (upon which g(x) is mapped by \$) has zeros in F'.

PROOF. Clearly it suffices to prove that the condition is sufficient. From the assumptions it follows that there exists an isomorphism \mathfrak{f} of F upon a field F^* between S' and F' which induces \mathfrak{g} in S. Since g(x) has as many zeros in F as $g(x)\mathfrak{f}=g(x)\mathfrak{g}$ has zeros in F^* and in F', it follows that all the elements of F' which are algebraic with regard to S' are contained in F^* , and since F' is algebraic with regard to S', it follows that $F'=F^*$, that is that \mathfrak{g} is induced by the isomorphism \mathfrak{f} of F upon F'.

COROLLARY 2. If F is algebraic and separable with regard to its subfield S, and F' is algebraic with regard to its subfield S', then the isomorphism & of S upon S' is induced by an isomorphism of F upon F' if, and only if, the polynomial g(x) in S has a zero in F if, and only if, g(x) has a zero in F'.

PROOF. It suffices to prove the sufficiency of the condition. Since an algebraic extension of a field is separable if, and only if, the solved irreducible equations of the subfield are separable, \dagger F' is separable with regard to S'. By Corollary 1, F and F' are completely algebraic with regard to S and S', respectively. There exists therefore

an isomorphism f of F upon a field G' between S' and F' which induces g in S.

an isomorphism \mathfrak{g} of F' upon a field G between S and F which induces \mathfrak{g}^{-1} in S'.

If the polynomial g(x) in S has n zeros in F and the polynomial g(x) has n' zeros in F', then $n \le n' \le n$, that is, n = n', since the zeros of g(x) are mapped by f upon zeros of g(x) and the zeros of g(x) are mapped by g upon zeros of g(x). The isomorphism $\mathfrak S$ satisfies therefore the condition of Theorem 1 and is consequently induced by an isomorphism of F upon F'.

COROLLARY 3. If F and G are algebraic with regard to their common subfield S, and if F is separable with regard to S, then F and G are equivalent with regard to S if, and only if, the same equations in S have solutions in F and in G.

[†] See Steinitz, loc. cit.

Suppose that F is a field of characteristic $p \neq 0$ and that K is a subfield of F. Then the element x of F is said to be a *root* with regard to K if there exists an integer $n = n(x) \geq 0$ such that x^{p^n} is an element of K. The set R(K < F) of all the elements in F which are roots with regard to K is a subfield of F, containing K. \dagger

LEMMA 2. Suppose that K_i is a subfield of the field F_i of characteristic $p \neq 0$, and that there exists an isomorphism \mathfrak{k} of K_1 upon K_2 , satisfying the condition (K) an equation with coefficients in K_1 has a solution in F_1 if, and only if, the (under \mathfrak{k}) corresponding equation in K_2 has a solution in F_2 . Then there exists one and only one isomorphism \mathfrak{k} of $R(K_1 < F_1)$ upon $R(K_2 < F_2)$ which induces \mathfrak{k} in K_1 and this isomorphism \mathfrak{k} satisfies the condition (R) an equation with coefficients in $R(K_1 < F_1)$ has a solution in F_1 if, and only if, the (under \mathfrak{k}) corresponding equation in $R(K_2 < F_2)$ has a solution in F_2 .

PROOF. If the element b of F_i is a root with regard to K_i , then there exists a smallest not negative integer e = e(b) such that $b^{p^{e(b)}} = b^*$ is an element of K_i . The polynomial $f_b(x) = x^{p^{e(b)}} - b^*$ is irreducible in K_i and its only zero in F_i is b, since $f_b(x) = (x-b)^{p^{e(b)}}$ in F_i . Conversely, a polynomial of the form $x^{p^j} - c$ in K_i has at most one zero in F_i .

If now b is any element of $R(K_1 < F_1)$, then it follows from these remarks and from condition (K) that there exists exactly one zero of the polynomial $x^{p^{r(b)}} - b^*\mathfrak{k}$ in F_2 , and this uniquely determined element of F_2 may be denoted by $b\mathfrak{k}$. It follows from the mentioned properties of the fields $R(K_i < F_i)$ and from the equations $(x+y)^{p^i} = x^{p^i} + y^{p^i}$, that \mathfrak{k} is an isomorphism of $R(K_1 < F_1)$ upon $R(K_2 < F_2)$ which induces \mathfrak{k} in K_1 , and that \mathfrak{k} is the only isomorphism with this property.

From the formula which has just been mentioned it follows that there exists to every polynomial f(x) in $R(K_i < F_i)$ a not negative integer n such that $f(x)^{p^n}$ is a polynomial in K_i . The polynomial f(x) = 0 has therefore a solution in F_i if, and only if, the equation $f(x)^{p^n} = 0$ (with coefficients in K_i) has a solution in F_i . Now (R) is a consequence of (K).

[†] See Steinitz, loc. cit., §§11-14.

[‡] See Steinitz, loc. cit., §§11-14.

A consequence of this Lemma 2 and of Corollary 2 is the following corollary.

COROLLARY 4. Suppose that the field F_i of characteristic $p \neq 0$ is algebraic with regard to its subfield K and that F_1 is separable with regard to $R(K < F_1)$. Then F_1 and F_2 are equivalent extensions of their common subfield K if, and only if, the same equations in K have solutions in F_1 and in F_2 .

REMARK. If F is an algebraic extension of the field K of characteristic $p\neq 0$, then it may happen that F is not separable with regard to R(K < F).† If F is algebraic and normal with regard to K, then F is always‡ separable with regard to K(K < F). Corollary 4 contains therefore the analogous proposition concerning normal algebraic extensions which has been mentioned in the beginning of this note.

THE INSTITUTE FOR ADVANCED STUDY

[†] An example for this phenomenon may be found in R. Baer, Abbildungs-eigenschaften algebraischer Erweiterungen, Mathematische Zeitschrift, vol. 33 (1931), pp. 451-479, particularly pp. 471-472.

[‡] See Baer, loc. cit., Satz 14 on p. 471; for further criteria see Sätze 15 and 16.