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ON LINE INTEGRALS AND DIFFERENTIAL 
EQUATIONS, ESPECIALLY THOSE OF 

DYNAMICS 

BY D. C. LEWIS, JR. 

1. Introduction and Formulation of the Problem. Recently a 
formula was given, exhibiting a Cartan relatively invariant line 
integral for a non-holonomic conservative dynamical system.* 
I wish to show that this formula is a special case of a more gen­
eral formula which will here be developed. The formula itself 
is not explicitly that of a relatively invariant line integral, even 
in the special case previously treated. Nevertheless, under cer­
tain restrictions it can undoubtedly be put into that form, f 

Let us consider the system of differential equations 

d%i d%2 dxm 

X\ X2 Xm 

together with an arbitrary linear differential form ^2i=slAidxi, 
where the Xi(xh • • • , xm) and Ai(xi, • • • , xm) are of class Cn 

in a region R. Let T0 be a closed curve t in R, whose parametric 
equations are given, say, by 

Xi = x^ (r), 0 ^ r ^ 1, xt» (0) = x/°> (1), (i = 1, • • • , m). 

Consider the tube T of trajectories of (1) which pass through T0. 
Let rw i be any other similar closed curve embracing this tube ; 
that is, TWl cuts each trajectory of the tube the same number of 
times as T0 and in the same order. § The whole of T between T0 

and TMl inclusive is assumed to be contained in R. 

* A. E. Taylor, On the integral invariants of non-holonomic dynamical sys­
tems, this Bulletin, vol. 40 (1934), pp. 735-742. 

f For a complete treatment and bibliography of the related subject of 
integral invariants see E. J. Cartan's book, Leçons sur les Invariants Intégraux, 
1922. 

Î The curve To may have double points. For definiteness it may be assumed 
that the xf0^ (r) are of class C" except for a finite number of corners. 

§ It is to be noticed that T is a singular tube (in a certain obvious sense) 
whenever r 0 cuts a trajectory more than once. This is necessarily the case 
when m = 2. 
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In its most general form the formula to which we allude gives 
a relation between the values of the line integral 

ƒ m 

X) Aidxi 

taken over the path T0 and its value over the path Tuv the two 
paths being taken in proper senses. 

2. Derivation of the General Result. T may be represented 
parametrically by equations of the form 

(2) Xi = Xi{r, u), Xi(0, u) = Xi(l, u), 

where the lines T = constant represent the trajectories, the line 
u = 0 represents the curve To, and the line u~U\ (where U\ is any 
preassigned number other than zero) represents the curve Tuv 

as anticipated in the notation.* Along a trajectory on T we 
must have the following relations deduced from (1) : 

dXi 
(3) c= U(T, u)Xi[xi(T} « ) , • • • , xm(r, u)\, (i = 1, 2, • • • , tn). 

du 
The factor of proportionality U is at most a function of r and u. 
For constant u equations (2) represent a closed curve Tu. Let 

X l ^ i ^ * = I ( YjAi -)dT. 

We find by a straightforward process of differentiation, integra­
tion by parts, and substitution from (3), that 

dJ f V A dxi\ 

aw •/ o \ i=i ^ T / 

where 

JHy/dAi dAj\ 
(5) ft= E - - ^ . 

Thus we get the required relation connecting J(ui) and J(0) : 

* This can obviously be done in an infinite number of ways, such that 
Xi(r, u) is of class C" except on a finite number of trajectories corresponding to 
the corners of r0 , where dxi/du is continuous but dXi/dr and the second partial 
derivatives may not be. 
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o •/ o \ i=i dr / 

In case R is a small neighborhood of a point where not all the 
X's vanish simultaneously, it is possible to write the iterated 
integral on the right as a line integral about TU1. This represen­
tation is rather artificial, however, and we shall not insist upon 
it.* Furthermore the existence of a relatively invariant line in­
tegral in this case can yield no invariantive properties of the 
system (1). It is hardly more than a reflection of the fact that 
the system (1) can be transformed in such a region into the 
form dxi/0 = dx2/0 = • • • = dxm-i/Q=dxm/l. 

3. An Important Special Case. We now consider the special 
case when Xm = l. In this case it is usual to write t in place of xm. 
From (3) and (5), we see that 

f dt 
— = £/(r, u), 
du 

(7) 

_ m^/dAi dA\ dAi dAm 

j-i \dxj dxj dt 0Xi 

,-i \ dXj dt / 

(i = 1, 2, • • • , m - 1), 

4. The Application to Dynamics. Let us apply the special case 
of the preceding paragraph to the equations of motion of a dy­
namical system (not necessarily conservative), written in the 
following form : 

doi dll dpi dH 
(8) — = — , - i L = - _ + Q . , ( £ = 1 , 2 , . - . , » ) , 

dt dpi dt dqi 
taking qt = x2i-h pi = x2i, X2i-i = dH/dpi, X2i = — (dH/dqi) + Qi9 

(2n = rn — l), where H and the Q's are functions of the g's, p's, 
and t. The linear differential form which we consider along with 
(8) is Y,n.=1pidqi-Hdt, so that 

A2i-i = x2i, A2i — 0, Am = A2n+i = — H. 

* Taylor analogously makes the tacit assumption that the left hand side of 
his equation (15) is a line integral; loc. cit., p. 740. 
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A straightforward calculation based on (7) shows us that 

» dH 
fe-1 = Qi, @2i = 0, (3m — ftn+l — ~~ JLI Qi' 

i=l dpi 
Hence, if 

/

» n 

X) Pidqi — Hdt, 
we see from (4) that 

r1 r A dqi A dH dn dt 

(9) J 'do-j £ o < ^ - £ — o < - - * , 
•/ o L i= i or i=i d^i d r j dw 

and thus 
rl f w T A ^ A dH dtldt 

(10) /(Wl) = 7(0) + I dr I E O t - 7 - E — 6 * 7 - ^ -
*/ o J o L i=i dr i^i d^î dr J dw 

This is a generalization of Taylor's formula for non-holonomic 
systems, as we shall show in §5. 

Another interesting result is obtained as a special case by sup­
posing r 0 and rM1 to lie in planes t = const. In this case one may 
take t = u-\-to (where /0 is a constant) and hence dt/du = l and 
dt/dr = 0. The curve TU may be thought of as a closed curve IY 
in the phase space steadily moving with the time. It is to be 
noted that, for a fixed t, IY may be preassigned instead of TtQ as 
previously. An immediate corollary of (9) informs us that the 
time rate of change of the line integral 

/

» n 

H pid<n 
is equal to the line integral 

ƒ» n 

J^Qidqi. 
This result has the advantage of being expressible without the 
explicit introduction of the parameters r and u. A result of this 
type can also be stated for the system of §3. 

5. Non-Holonomic Dynamical Systems. We next consider a 
conservative non-holonomic system subject to the constraints 
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^2^==:1^aiSqi+aaôt = 0J (ce=l, • • • , k<n), in which the a's are 
functions of the q's and t. We may write the equations of motion 
in the form (8), if we take 

k 

(11) Qi = X) aai\a, 

where the A's are functions of the p's, q's, and t, chosen in such a 
manner that the equations (8) admit the following k first in­
tegrals : 

(12) 2^ a«i V aa = c«, a constant, (a = 1, • • • , &) .* 
i=i dpi 

Thus, since dH/dpi = dqi/dt, a motion which initially satisfies 
the conditions of constraint will continue to do so. The motions 
of the non-holonomic system are precisely those motions of (8) 
for which ci = C2= • • • =Ck — 0. In considering the motions for 
which all these constants are not necessarily zero, we shall, how­
ever, be considering also certain motions which are not kine-
matically possible, that is, which do not satisfy the conditions 
of constraint. If we multiply (12) by X« and sum over a, we 
obtain 

i,a UjPi a a 

But this may be written with the help of (11) in the form 
n dH k 

(i3) YsQi— = X ( ' « - a«)x«. 

i^i dpi a==i 

Substituting from (11) and (13) into (10), we find that 
* The X's may be calculated as follows: Differentiate (12) totally with 

respect to / and substitute for the derivatives of the p's and #'s their values as 
given by (8). In virtue of (11) the result is a system of k linear equations in 
the unknowns Xi, • • • , X&. In the most important case where the kinetic 
energy can be written as a positive definite form in the velocities, the deter­
minant of this system can be shown to be different from zero, the k equations 
of constraint being linearly independent. The determinant can even be written 
in diagonal form by a preliminary normalization of the equations of constraint. 
See G. Prange, Die Allgemeinen Integrationsmethoden der Analytischen Me-
chanik, Encyklopâdie der Mathematischen Wissenschaften, IV Mechanik, 2 
(1935), p. 558. 
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JM = /(O) + f' dr fUl\it( 2>«A«) — 

— ( IL (C« — aa)\a J— 
dt 
— du. 
du 

Since e's may have different values along different trajectories 
of T, they are here to be considered as functions of r. If we take 
all the c's equal to zero, thus considering only the actual mo­
tions of the non-holonomic system, we have exactly the result 
of Taylor, save for a difference in notation.* 

6. Characterization of Differential Equations by Line Integrals. 
Going back to the general case of §§1 and 2, we now state in 
conclusion that the validity of (4), or (6), for all tubes T charac­
terizes completely the differential equations (1), provided that the 
m-rowed determinant, 

dAi dAj 

ÇJ Jv 2 (J Ji i, 

(i,j = 1, • • • ,m) , 

is not zero. For, suppose the ^4's and jS's are given such that (4) 
holds for all tubes T. Then, U(dxi/dr) may be taken almost 
arbitrarily, and the equations (5) result. But these are sufficient 
to determine the X's in terms of the ^4's and jo's. The details 
are left to the reader. 

In the more restricted case of §3, it is only necessary that the 
(m — l)-rowed determinant, 

dA i à A t 

O % j Cf % i 
(i,j = 1, * ' • ,w ~ 1), 

be distinct from zero. For, in this case, Xm is given = 1 and equa­
tions (7) are surely sufficient to determine the other X's. 

This latter condition is fulfilled in the case of the dynamical 
equations and the action line integral of §4. 

CORNELL UNIVERSITY 

* Loc. cit., equation (15). Taylor's X's are the negatives of ours. He also 
takes the curve To (though not FMl) in a plane t = const. 


